skip to main content


Title: A large invasive consumer reduces coastal ecosystem resilience by disabling positive species interactions
Abstract Invasive consumers can cause extensive ecological damage to native communities but effects on ecosystem resilience are less understood. Here, we use drone surveys, manipulative experiments, and mathematical models to show how feral hogs reduce resilience in southeastern US salt marshes by dismantling an essential marsh cordgrass-ribbed mussel mutualism. Mussels usually double plant growth and enhance marsh resilience to extreme drought but, when hogs invade, switch from being essential for plant survival to a liability; hogs selectively forage in mussel-rich areas leading to a 50% reduction in plant biomass and slower post-drought recovery rate. Hogs increase habitat fragmentation across landscapes by maintaining large, disturbed areas through trampling of cordgrass during targeted mussel consumption. Experiments and climate-disturbance recovery models show trampling alone slows marsh recovery by 3x while focused mussel predation creates marshes that may never recover from large-scale disturbances without hog eradication. Our work highlights that an invasive consumer can reshape ecosystems not just via competition and predation, but by disrupting key, positive species interactions that underlie resilience to climatic disturbances.  more » « less
Award ID(s):
1832178
NSF-PAR ID:
10313028
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Salt marshes suffered large‐scale degradation in recent decades. Extreme events such as hot and dry spells contributed significantly to this, and are predicted to increase not only in intensity, but also in frequency under future climate scenarios. Such repetitive extreme events may generate cumulative effects on ecosystem resilience. It is therefore important to elucidate how marsh vegetation responds to repetitive stress, and whether changes in key species interactions can modulate vegetation resilience.

    In this study, we investigated how moderate but repetitive desiccation events, caused by the combined effects of drought and high temperatures, affect cordgrass (Spartina alterniflora), the dominant habitat‐forming grass in southeasternUSsalt marshes. In a 4‐month field experiment, we simulated four consecutive desiccation events by periodically excluding tidal flooding and rainfall, while raising temperature. We crossed this desiccation treatment with the presence/absence of ribbed mussels (Geukensia demissa) – a mutualist of cordgrass known to enhance its desiccation resilience – and with grazing pressure by the marsh periwinkle (Littoraria irrorata) that is known to suppress cordgrass’ desiccation resilience.

    We found that each subsequent desiccation event deteriorated sediment porewater conditions, resulting in high salinity (53 ppt), low pH‐levels (3.7) and increased porewater Al and Fe concentrations (≈800 μmol/L and ≈1,500 μmol/L) upon rewetting. No effects on porewater chemistry were found as a result of snail grazing, while ribbed mussels strongly mitigated desiccation effects almost to control levels and increased cordgrass biomass by approximately 128%. Importantly, although cordgrass generally appeared healthy above‐ground at the end of the experiment, we found clear negative responses of the repetitive desiccation treatment on cordgrass below‐ground biomass, on proline (osmolyte) levels in shoots and on the number of tillers (−40%), regardless of mussel and/or snail presence.

    Synthesis. Even though the mutualism with mussels strongly mitigated chemical effects in the sediment porewater throughout the experiment, mussels could not buffer the adverse ecophysiological effects observed in cordgrass tissue. Our results therefore suggest that although mussels may alleviate desiccation stress, the predicted increased frequency and intensity of hot dry spells may eventually affect saltmarsh resilience by stressing the mutualism beyond its buffering capacity.

     
    more » « less
  2. Abstract

    Disturbances are increasing in size and frequency with climate change, facilitating species that opportunistically exploit areas where habitat‐forming foundation species have been removed. Although it is well‐recognized that consumers, disease and weedy space‐holders can affect foundation species’ resistance to and recovery from disturbance, how predators influence their resilience is less clear.

    In salt marshareas de‐vegetated by drought and intensive snailLittoraria irroratagrazing (hereafter, ‘die‐offs’), we monitored bird use and experimentally manipulated bird and nekton access to the vegetated borders of die‐off mudflats across periods of both vegetation die‐off and regrowth to explore how these predators mediate the resilience of cordgrassSpartina alterniflora, the foundation species that structures US Atlantic coast salt marshes.

    Surveys revealed that birds, especially probers that agitate soils, forage year‐round for invertebrates in die‐off mudflats in our study area but not in adjacent vegetated areas.

    During periods of die‐off, cordgrass borders accessible to bird and nekton predators retreated >3‐times slower and snail densities were halved, relative to predator exclusion cages. In predator‐accessible plots, slower border retreat corresponded to greater snail infection by a bird host‐dependent trematode parasite. During recovery, cordgrass borders revegetated more quickly, and snail densities declined faster over time in unmanipulated controls relative to predator exclusions.

    Synthesis. These findings suggest that birds, through their transmission of parasites to snails, appear to act synergistically with snail‐consuming nekton to slow cordgrass loss after drought‐snail disturbances. Predator access also corresponds to faster cordgrass recovery as environmental conditions improve, although the mechanisms behind this need further investigation. Thus, predators that opportunistically forage within disturbances have the potential to suppress consumer impacts through multiple mechanisms, including consumption and disease transmission, thereby bolstering foundation species’ resilience and modulating whole ecosystem responses to climate change.

     
    more » « less
  3. Abstract

    Quantifying ecosystem resilience to disturbance is important for understanding the effects of disturbances on ecosystems, especially in an era of rapid global change. However, there are few studies that have used standardized experimental disturbances to compare resilience patterns across abiotic gradients in real‐world ecosystems. Theoretical studies have suggested that increased return times are associated with increasing variance during recovery from disturbance. However, this notion has rarely been explicitly tested in field, in part due to the challenges involved in obtaining long‐term experimental data. In this study, we examined resilience to disturbance of 12 coastal marsh sites (five low‐salinity and seven polyhaline [=salt] marshes) along a salinity gradient in Georgia, USA. We found that recovery times after experimental disturbance ranged from 7 to >127 months, and differed among response variables (vegetation height, cover and composition). Recovery rates decreased along the stress gradient of increasing salinity, presumably due to stress reducing plant vigor, but only when low‐salinity and polyhaline sites were analyzed separately, indicating a strong role for traits of dominant plant species. The coefficient of variation of vegetation cover and height in control plots did not vary with salinity. In disturbed plots, however, the coefficient of variation (CV) was consistently elevated during the recovery period and increased with salinity. Moreover, higher CV values during recovery were correlated with slower recovery rates. Our results deepen our understanding of resilience to disturbance in natural ecosystems, and point to novel ways that variance can be used either to infer recent disturbance, or, if measured in areas with a known disturbance history, to predict recovery patterns.

     
    more » « less
  4. null (Ed.)
    Keystone species have large ecological effects relative to their abundance and have been identified in many ecosystems. However, global change is pervasively altering environmental conditions, potentially elevating new species to keystone roles. Here, we reveal that a historically innocuous grazer—the marsh crab Sesarma reticulatum —is rapidly reshaping the geomorphic evolution and ecological organization of southeastern US salt marshes now burdened by rising sea levels. Our analyses indicate that sea-level rise in recent decades has widely outpaced marsh vertical accretion, increasing tidal submergence of marsh surfaces, particularly where creeks exhibit morphologies that are unable to efficiently drain adjacent marsh platforms. In these increasingly submerged areas, cordgrass decreases belowground root:rhizome ratios, causing substrate hardness to decrease to within the optimal range for Sesarma burrowing. Together, these bio-physical changes provoke Sesarma to aggregate in high-density grazing and burrowing fronts at the heads of tidal creeks (hereafter, creekheads). Aerial-image analyses reveal that resulting “ Sesarma- grazed” creekheads increased in prevalence from 10 ± 2% to 29 ± 5% over the past <25 y and, by tripling creek-incision rates relative to nongrazed creekheads, have increased marsh-landscape drainage density by 8 to 35% across the region. Field experiments further demonstrate that Sesarma- grazed creekheads, through their removal of vegetation that otherwise obstructs predator access, enhance the vulnerability of macrobenthic invertebrates to predation and strongly reduce secondary production across adjacent marsh platforms. Thus, sea-level rise is creating conditions within which Sesarma functions as a keystone species that is driving dynamic, landscape-scale changes in salt-marsh geomorphic evolution, spatial organization, and species interactions. 
    more » « less
  5. Abstract

    Coastal communities increasingly invest in natural and nature‐based features (e.g., living shorelines) as a strategy to protect shorelines and enhance coastal resilience. Tidal marshes are a common component of these strategies because of their capacity to reduce wave energy and storm surge impacts. Performance metrics of restoration success for living shorelines tend to focus on how the physical structure of the created marsh enhances shoreline protection via proper elevation and marsh plant presence. These metrics do not fully evaluate the level of marsh ecosystem development. In particular, the presence of key marsh bivalve species can indicate the capability of the marsh to provide non‐protective services of value, such as water quality improvement and habitat provision. We observed an unexpected low to no abundance of the filter‐feeding ribbed mussel,Geukensia demissa, in living shoreline marshes throughout Chesapeake Bay. In salt marsh ecosystems along the Atlantic Coast of the United States, ribbed mussels improve water quality, enhance nutrient removal, stabilize the marsh, and facilitate long‐term sustainability of the habitat. Through comparative field surveys and experiments within a chronosequence of 13 living shorelines spanning 2–16 years since construction, we examined three factors we hypothesized may influence recruitment of ribbed mussels to living shoreline marshes: (1) larval access to suitable marsh habitat, (2) sediment quality of low marsh (i.e., potential mussel habitat), and (3) availability of high‐quality refuge habitat. Our findings suggest that at most sites larval mussels are able to access and settle on living shoreline created marshes behind rock sill structures, but that most recruits are likely not surviving. Sediment organic matter (OM) and plant density were correlated with mussel abundance, and sediment OM increased with marsh age, suggesting that living shoreline design (e.g., sand fill, planting grids) and lags in ecosystem development (sediment properties) are reducing the survival of the young recruits. We offer potential modifications to living shoreline design and implementation practices that may facilitate self‐sustaining ribbed mussel populations in these restored habitats.

     
    more » « less