We measure the molecular-to-atomic gas ratio,
We discuss five blue stellar systems in the direction of the Virgo cluster, analogous to the enigmatic object SECCO 1 (AGC 226067). These objects were identified based on their optical and UV morphology and followed up with H
- Authors:
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publication Date:
- NSF-PAR ID:
- 10369928
- Journal Name:
- The Astrophysical Journal
- Volume:
- 935
- Issue:
- 1
- Page Range or eLocation-ID:
- Article No. 51
- ISSN:
- 0004-637X
- Publisher:
- DOI PREFIX: 10.3847
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract R mol, and the star formation rate (SFR) per unit molecular gas mass, SFEmol, in 38 nearby galaxies selected from the Virgo Environment Traced in CO (VERTICO) survey. We stack ALMA12CO (J = 2−1) spectra coherently using Hi velocities from the VIVA survey to detect faint CO emission out to galactocentric radiir gal∼ 1.2r 25. We determine the scale lengths for the molecular and stellar components, finding a ∼3:5 relation compared to ∼1:1 in field galaxies, indicating that the CO emission is more centrally concentrated than the stars. We computeR molas a function of different physical quantities. While the spatially resolvedR molon average decreases with increasing radius, we find that the mean molecular-to-atomic gas ratio within the stellar effective radiusR e ,R mol(r <R e ), shows a systematic increase with the level of Hi , truncation and/or asymmetry (HIperturbation). Analysis of the molecular- and the atomic-to-stellar mass ratios withinR e , and , shows that VERTICO galaxies have increasingly lower for larger levels of HIperturbation (compared to field galaxies matched in stellar mass), but no significant change in . We also measure a clear systematic decrease of the SFEmolwithinR e , SFEmol(r <Re ),more » -
Abstract We use ALMA observations of CO(2–1) in 13 massive (
M *≳ 1011M ⊙) poststarburst galaxies atz ∼ 0.6 to constrain the molecular gas content in galaxies shortly after they quench their major star-forming episode. The poststarburst galaxies in this study are selected from the Sloan Digital Sky Survey spectroscopic samples (Data Release 14) based on their spectral shapes, as part of the Studying QUenching at Intermediate-z Galaxies: Gas, angu momentum, and Evolution ( ) program. Early results showed that two poststarburst galaxies host large H2reservoirs despite their low inferred star formation rates (SFRs). Here we expand this analysis to a larger statistical sample of 13 galaxies. Six of the primary targets (45%) are detected, withM ⊙. Given their high stellar masses, this mass limit corresponds to an average gas fraction of or ∼14% using lower stellar masses estimates derived from analytic, exponentially declining star formation histories. The gas fraction correlates with theD n 4000 spectral index, suggesting that the cold gas reservoirs decrease with time since burst, as found in local K+A galaxies. Star formation histories derived from flexible stellar population synthesis modeling support thismore » -
Abstract We use Hubble Space Telescope Wide Field Camera 3 G102 and G141 grism spectroscopy to measure rest-frame optical emission-line ratios of 533 galaxies at
z ∼ 1.5 in the CANDELS Lyα Emission at Reionization survey. We compare [Oiii ]/Hβ versus [Sii ]/(Hα + [Nii ]) as an “unVO87” diagram for 461 galaxies and [Oiii ]/Hβ versus [Neiii ]/[Oii ] as an “OHNO” diagram for 91 galaxies. The unVO87 diagram does not effectively separate active galactic nuclei (AGN) and [Nev ] sources from star-forming galaxies, indicating that the unVO87 properties of star-forming galaxies evolve with redshift and overlap with AGN emission-line signatures atz > 1. The OHNO diagram does effectively separate X-ray AGN and [Nev ]-emitting galaxies from the rest of the population. We find that the [Oiii ]/Hβ line ratios are significantly anticorrelated with stellar mass and significantly correlated with , while [Sii ]/(Hα + [Nii ]) is significantly anticorrelated with . Comparison with MAPPINGS V photoionization models indicates that these trends are consistent with lower metallicity and higher ionization in low-mass and high-star formation rate (SFR) galaxies. We do not find evidence for redshift evolution of the emission-line ratios outside of the correlations with mass and SFR. Our results suggest that the OHNO diagram of [Oiii ]/Hβ versus [Neiii ]/[Oii ] willmore » -
Abstract We use deep narrowband CaHK (F395N) imaging taken with the Hubble Space Telescope (HST) to construct the metallicity distribution function (MDF) of Local Group ultra-faint dwarf galaxy Eridanus
II (EriII ). When combined with archival F475W and F814W data, we measure metallicities for 60 resolved red giant branch stars as faint asm F475W∼ 24 mag, a factor of ∼4× more stars than current spectroscopic MDF determinations. We find that EriII has a mean metallicity of [Fe/H] = −2.50 and a dispersion of , which are consistent with spectroscopic MDFs, though more precisely constrained owing to a larger sample. We identify a handful of extremely metal-poor star candidates (EMP; [Fe/H] < −3) that are marginally bright enough for spectroscopic follow-up. The MDF of EriII appears well described by a leaky box chemical evolution model. We also compute an updated orbital history for EriII using Gaia eDR3 proper motions, and find that it is likely on first infall into the Milky Way. Our findings suggest that EriII underwent an evolutionary history similar to that of an isolated galaxy. Compared to MDFs for select cosmological simulations of similar mass galaxies, we find that EriII has a lower fraction of stars withmore » -
Abstract Tight binary or multiple-star systems can interact through mass transfer and follow vastly different evolutionary pathways than single stars. The star TYC 2597-735-1 is a candidate for a recent stellar merger remnant resulting from a coalescence of a low-mass companion with a primary star a few thousand years ago. This violent event is evident in a conical outflow (“Blue Ring Nebula”) emitting in UV light and surrounded by leading shock filaments observed in H
α and UV emission. From Chandra data, we report the detection of X-ray emission from the location of TYC 2597-735-1 with a luminosity . Together with a previously reported period of ~14 days, this indicates ongoing stellar activity and the presence of strong magnetic fields on TYC 2597-735-1. Supported by stellar evolution models of merger remnants, we interpret the inferred stellar magnetic field as dynamo action associated with a newly formed convection zone in the atmosphere of TYC 2597-735-1, though internal shocks at the base of an accretion-powered jet cannot be ruled out. We speculate that this object will evolve into an FK Com–type source, i.e., a class of rapidly spinning magnetically active stars for which a merger origin has beenmore »