null
(Ed.)
In this paper, we study communication-efficient decentralized training of large-scale machine learning models over a network. We propose and analyze SQuARM-SGD, a decentralized training algorithm, employing momentum and compressed communication between nodes regulated by a locally computable triggering rule. In SQuARM-SGD, each node performs a fixed number of local SGD (stochastic gradient descent) steps using Nesterov's momentum and then sends sparisified and quantized updates to its neighbors only when there is a significant change in its model parameters since the last time communication occurred. We provide convergence guarantees of our algorithm for strongly-convex and non-convex smooth objectives. We believe that ours is the first theoretical analysis for compressed decentralized SGD with momentum updates. We show that SQuARM-SGD converges at rate O(1/nT) for strongly-convex objectives, while for non-convex objectives it converges at rate O(1/√nT), thus matching the convergence rate of \emphvanilla distributed SGD in both these settings. We corroborate our theoretical understanding with experiments and compare the performance of our algorithm with the state-of-the-art, showing that without sacrificing much on the accuracy, SQuARM-SGD converges at a similar rate while saving significantly in total communicated bits.
more »
« less