skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Connecting Hamilton-Jacobi Partial Differential Equations with Maximum a Posteriori and Posterior Mean Estimators for Some Non-convex Priors.
Many imaging problems can be formulated as inverse problems expressed as finite-dimensional optimization problems. These optimization problems generally consist of minimizing the sum of a data fidelity and regularization terms. In Darbon (SIAM J. Imag. Sci. 8:2268–2293, 2015), Darbon and Meng, (On decomposition models in imaging sciences and multi-time Hamilton-Jacobi partial differential equations, arXiv preprint arXiv:1906.09502, 2019), connections between these optimization problems and (multi-time) Hamilton-Jacobi partial differential equations have been proposed under the convexity assumptions of both the data fidelity and regularization terms. In particular, under these convexity assumptions, some representation formulas for a minimizer can be obtained. From a Bayesian perspective, such a minimizer can be seen as a maximum a posteriori estimator. In this chapter, we consider a certain class of non-convex regularizations and show that similar representation formulas for the minimizer can also be obtained. This is achieved by leveraging min-plus algebra techniques that have been originally developed for solving certain Hamilton-Jacobi partial differential equations arising in optimal control. Note that connections between viscous Hamilton-Jacobi partial differential equations and Bayesian posterior mean estimators with Gaussian data fidelity terms and log-concave priors have been highlighted in Darbon and Langlois, (On Bayesian posterior mean estimators in imaging sciences and Hamilton-Jacobi partial differential equations, arXiv preprint arXiv:2003.05572, 2020). We also present similar results for certain Bayesian posterior mean estimators with Gaussian data fidelity and certain non-log-concave priors using an analogue of min-plus algebra techniques.  more » « less
Award ID(s):
1820821
PAR ID:
10313187
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging. Springer,
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study approximations to the Moreau envelope—and infimal convolutions more broadly—based on Laplace’s method, a classical tool in analysis which ties certain integrals to suprema of their integrands. We believe the connection between Laplace’s method and infimal convolutions is generally deserving of more attention in the study of optimization and partial differential equations, since it bears numerous potentially important applications, from proximal-type algorithms to Hamilton-Jacobi equations. 
    more » « less
  2. Abstract We revisit the problem of approximating minimizers of certain convex functionals subject to a convexity constraint by solutions of fourth order equations of Abreu type. This approximation problem was studied in previous articles of Carlier–Radice (Approximation of variational problems with a convexity constraint by PDEs of Abreu type. Calc. Var. Partial Differential Equations 58 (2019), no. 5, Art. 170) and the author (Singular Abreu equations and minimizers of convex functionals with a convexity constraint, arXiv:1811.02355v3, Comm. Pure Appl. Math. , to appear), under the uniform convexity of both the Lagrangian and constraint barrier. By introducing a new approximating scheme, we completely remove the uniform convexity of both the Lagrangian and constraint barrier. Our analysis is applicable to variational problems motivated by the original 2D Rochet–Choné model in the monopolist's problem in Economics, and variational problems arising in the analysis of wrinkling patterns in floating elastic shells in Elasticity. 
    more » « less
  3. Abstract We propose a new approach to deriving quantitative mean field approximations for any probability measure $$P$$ on $$\mathbb {R}^{n}$$ with density proportional to $$e^{f(x)}$$, for $$f$$ strongly concave. We bound the mean field approximation for the log partition function $$\log \int e^{f(x)}dx$$ in terms of $$\sum _{i \neq j}\mathbb {E}_{Q^{*}}|\partial _{ij}f|^{2}$$, for a semi-explicit probability measure $$Q^{*}$$ characterized as the unique mean field optimizer, or equivalently as the minimizer of the relative entropy $$H(\cdot \,|\,P)$$ over product measures. This notably does not involve metric-entropy or gradient-complexity concepts which are common in prior work on nonlinear large deviations. Three implications are discussed, in the contexts of continuous Gibbs measures on large graphs, high-dimensional Bayesian linear regression, and the construction of decentralized near-optimizers in high-dimensional stochastic control problems. Our arguments are based primarily on functional inequalities and the notion of displacement convexity from optimal transport. 
    more » « less
  4. A class of nonlinear, stochastic staticization control problems (including minimization problems with smooth, convex, coercive payoffs) driven by diffusion dynamics with constant diffusion coefficient is considered. A fundamental solution form is obtained where the same solution can be used for a limited variety of terminal costs without re-solution of the problem. One may convert this fundamental solution form from a stochastic control problem form to a deterministic control problem form. This yields an equivalence between certain second-order (in space) Hamilton-Jacobi partial differential equations (HJ PDEs) and associated first-order HJ PDEs. This reformulation has substantial numerical implications. 
    more » « less
  5. G-equations are popular level set Hamilton–Jacobi nonlinear partial differential equations (PDEs) of first or second order arising in turbulent combustion. Characterizing the effective burning velocity (also known as the turbulent burning velocity) is a fundamental problem there. We review relevant studies of the G-equation models with a focus on both the existence of effective burning velocity (homogenization), and its dependence on physical and geometric parameters (flow intensity and curvature effect) through representative examples. The corresponding physical background is also presented to provide motivations for mathematical problems of interest. Thelack of coercivityof Hamiltonian is a hallmark of G-equations. When either the curvature of the level set or the strain effect of fluid flows is accounted for, the Hamiltonian becomeshighly nonconvex and nonlinear. In the absence of coercivity and convexity, the PDE (Eulerian) approach suffers from insufficient compactness to establish averaging (homogenization). We review and illustrate a suite of Lagrangian tools, most notably min-max (max-min) game representations of curvature and strain G-equations, working in tandem with analysis of streamline structures of fluid flows and PDEs. We discuss open problems for future development in this emerging area of dynamic game analysis for averaging noncoercive, nonconvex, and nonlinear PDEs such as geometric (curvature-dependent) PDEs with advection. 
    more » « less