skip to main content


Title: Cognitive Preadaptation for Resilient Adaptive Control
In this paper, we investigate a novel control architecture and algorithm for incorporating preadaption functions. We propose a preadaptation mechanism that can augment any adaptive control scheme and improve its resilience. We also propose a preadaptation learner that learns the preadaption function with experience, which removes the complexity of designing and fine tuning the preadaptation function specific to the system to be controlled. Through simulations of a flight control system we illustrate the effectiveness of the preadaptation mechanism in improving the adaptation. We show that the preadaptation mechanism we propose can reduce the peak of the response by as much as $50\%$. The scenarios we present also show that the preadaptation mechanism is effective across a wide range of scenarios suggesting that the mechanism is reliable.  more » « less
Award ID(s):
1839429
NSF-PAR ID:
10313245
Author(s) / Creator(s):
;
Date Published:
Journal Name:
AIAA Scitech 2021 Forum
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we propose a novel control architecture, inspired from neuroscience, for adaptive control of continuous time systems. The objective here is to design control architectures and algorithms that can learn and adapt quickly to changes that are even abrupt. The proposed architecture, in the setting of standard neural network (NN) based adaptive control, augments an external working memory to the NN. The learning system stores, in its external working memory, recently observed feature vectors from the hidden layer of the NN that are relevant and forgets the older irrelevant values. It retrieves relevant vectors from the working memory to modify the final control signal generated by the controller. The use of external working memory improves the context inducing the learning system to search in a particular direction. This directed learning allows the learning system to find a good approximation of the unknown function even after abrupt changes quickly. We consider two classes of controllers for illustration of our ideas (i) a model reference NN adaptive controller for linear systems with matched uncertainty (ii) backstepping NN controller for strict feedback systems. Through extensive simulations and specific metrics we show that memory augmentation improves learning significantly even when the system undergoes sudden changes. Importantly, we also provide evidence for the proposed mechanism by which this specific memory augmentation improves learning. 
    more » « less
  2. In this paper, we develop a novel and safe control design approach that takes demonstrations provided by a human teacher to enable a robot to accomplish complex manipulation scenarios in dynamic environments. First, an overall task is divided into multiple simpler subtasks that are more appropriate for learning and control objectives. Then, by collecting human demonstrations, the subtasks that require robot movement are modeled by probabilistic movement primitives (ProMPs). We also study two strategies for modifying the ProMPs to avoid collisions with environmental obstacles. Finally, we introduce a rule-base control technique by utilizing a finite-state machine along with a unique means of control design for ProMPs. For the ProMP controller, we propose control barrier and Lyapunov functions to guide the system along a trajectory within the distribution defined by a ProMP while guaranteeing that the system state never leaves more than a desired distance from the distribution mean. This allows for better performance on nonlinear systems and offers solid stability and known bounds on the system state. A series of simulations and experimental studies demonstrate the efficacy of our approach and show that it can run in real time. Note to Practitioners —This paper is motivated by the need to create a teach-by-demonstration framework that captures the strengths of movement primitives and verifiable, safe control. We provide a framework that learns safe control laws from a probability distribution of robot trajectories through the use of advanced nonlinear control that incorporates safety constraints. Typically, such distributions are stochastic, making it difficult to offer any guarantees on safe operation. Our approach ensures that the distribution of allowed robot trajectories is within an envelope of safety and allows for robust operation of a robot. Furthermore, using our framework various probability distributions can be combined to represent complex scenarios in the environment. It will benefit practitioners by making it substantially easier to test and deploy accurate, efficient, and safe robots in complex real-world scenarios. The approach is currently limited to scenarios involving static obstacles, with dynamic obstacle avoidance an avenue of future effort. 
    more » « less
  3. We consider the problem of estimating the location of a single change point in a network generated by a dynamic stochastic block model mechanism. This model produces community structure in the network that exhibits change at a single time epoch. We propose two methods of estimating the change point, together with the model parameters, before and after its occurrence. The first employs a least-squares criterion function and takes into consideration the full structure of the stochastic block model and is evaluated at each point in time. Hence, as an intermediate step, it requires estimating the community structure based on a clustering algorithm at every time point. The second method comprises the following two steps: in the first one, a least-squares function is used and evaluated at each time point, but ignoring the community structure and only considering a random graph generating mechanism exhibiting a change point. Once the change point is identified, in the second step, all network data before and after it are used together with a clustering algorithm to obtain the corresponding community structures and subsequently estimate the generating stochastic block model parameters. The first method, since it requires knowledge of the community structure and hence clustering at every point in time, is significantly more computationally expensive than the second one. On the other hand, it requires a significantly less stringent identifiability condition for consistent estimation of the change point and the model parameters than the second method; however, it also requires a condition on the misclassification rate of misallocating network nodes to their respective communities that may fail to hold in many realistic settings. Despite the apparent stringency of the identifiability condition for the second method, we show that networks generated by a stochastic block mechanism exhibiting a change in their structure can easily satisfy this condition under a multitude of scenarios, including merging/splitting communities, nodes joining another community, etc. Further, for both methods under their respective identifiability and certain additional regularity conditions, we establish rates of convergence and derive the asymptotic distributions of the change point estimators. The results are illustrated on synthetic data. In summary, this work provides an in-depth investigation of the novel problem of change point analysis for networks generated by stochastic block models, identifies key conditions for the consistent estimation of the change point, and proposes a computationally fast algorithm that solves the problem in many settings that occur in applications. Finally, it discusses challenges posed by employing clustering algorithms in this problem, that require additional investigation for their full resolution. 
    more » « less
  4. Cluster detection is important and widely used in a variety of applications, including public health, public safety, transportation, and so on. Given a collection of data points, we aim to detect density-connected spatial clusters with varying geometric shapes and densities, under the constraint that the clusters are statistically significant. The problem is challenging, because many societal applications and domain science studies have low tolerance for spurious results, and clusters may have arbitrary shapes and varying densities. As a classical topic in data mining and learning, a myriad of techniques have been developed to detect clusters with both varying shapes and densities (e.g., density-based, hierarchical, spectral, or deep clustering methods). However, the vast majority of these techniques do not consider statistical rigor and are susceptible to detecting spurious clusters formed as a result of natural randomness. On the other hand, scan statistic approaches explicitly control the rate of spurious results, but they typically assume a single “hotspot” of over-density and many rely on further assumptions such as a tessellated input space. To unite the strengths of both lines of work, we propose a statistically robust formulation of a multi-scale DBSCAN, namely Significant DBSCAN+, to identify significant clusters that are density connected. As we will show, incorporation of statistical rigor is a powerful mechanism that allows the new Significant DBSCAN+ to outperform state-of-the-art clustering techniques in various scenarios. We also propose computational enhancements to speed-up the proposed approach. Experiment results show that Significant DBSCAN+ can simultaneously improve the success rate of true cluster detection (e.g., 10–20% increases in absolute F1 scores) and substantially reduce the rate of spurious results (e.g., from thousands/hundreds of spurious detections to none or just a few across 100 datasets), and the acceleration methods can improve the efficiency for both clustered and non-clustered data. 
    more » « less
  5. Speech activity detection (SAD) serves as a crucial front-end system to several downstream Speech and Language Technology (SLT) tasks such as speaker diarization, speaker identification, and speech recognition. Recent years have seen deep learning (DL)-based SAD systems designed to improve robustness against static background noise and interfering speakers. However, SAD performance can be severely limited for conversations recorded in naturalistic environments due to dynamic acoustic scenarios and previously unseen non-speech artifacts. In this letter, we propose an end-to-end deep learning framework designed to be robust to time-varying noise profiles observed in naturalistic audio. We develop a novel SAD solution for the UTDallas Fearless Steps Apollo corpus based on NASA’s Apollo missions. The proposed system leverages spectro-temporal correlations with a threshold optimization mechanism to adjust to acoustic variabilities across multiple channels and missions. This system is trained and evaluated on the Fearless Steps Challenge (FSC) corpus (a subset of the Apollo corpus). Experimental results indicate a high degree of adaptability to out-of-domain data, achieving a relative Detection Cost Function (DCF) performance improvement of over 50% compared to the previous FSC baselines and state-of-the-art (SOTA) SAD systems. The proposed model also outperforms the most recent DL-based SOTA systems from FSC Phase-4. Ablation analysis is conducted to confirm the efficacy of the proposed spectro-temporal features. 
    more » « less