skip to main content

Search for: All records

Award ID contains: 1839429

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In autonomous vehicles (AVs), early warning systems rely on collision prediction to ensure occupant safety. However, state-of-the-art methods using deep convolutional networks either fail at modeling collisions or are too expensive/slow, making them less suitable for deployment on AV edge hardware. To address these limitations, we propose SG2VEC, a spatio-temporal scene-graph embedding methodology that uses Graph Neural Network (GNN) and Long Short-Term Memory (LSTM) layers to predict future collisions via visual scene perception. We demonstrate that SG2VEC predicts collisions 8.11% more accurately and 39.07% earlier than the state-of-the-art method on synthesized datasets, and 29.47% more accurately on a challenging realworld collision dataset. We also show that SG2VEC is better than the state-of-the-art at transferring knowledge from synthetic datasets to real-world driving datasets. Finally, we demonstrate that SG2VEC performs inference 9.3x faster with an 88.0% smaller model, 32.4% less power, and 92.8% less energy than the state-of-the-art method on the industry-standard Nvidia DRIVE PX 2 platform, making it more suitable for implementation on the edge.
    Free, publicly-accessible full text available January 1, 2023
  2. Integration of distributed renewable energy sources (D- RES) has been introduced as a viable solution to offer cheap and clean energy to customers in decentralized power system. D- RES can offer local generation to flexible customers based on their servicing deadline and constraints, benefiting both D- RES owners and customers in terms of providing economic revenue and reducing the cost of supplied energy. In this context, this paper proposes a dynamic matching framework using model predictive control (MPC) to enable local energy sharing in power system operation. The proposed matching framework matches flexible customers with D- RES to maximize social welfare in the matching market, while meeting the customers' servicing constraints prior to their deadline. Simulations are conducted on a test power system using multiple matching algorithms across different load and generation scenarios and the results highlighted the efficiency of proposed framework in matching flexible customers with the appropriate supply sources to maximize social welfare in the matching market.
    Free, publicly-accessible full text available January 1, 2023
  3. Free, publicly-accessible full text available December 1, 2022
  4. Integration of distributed renewable energy sources (D- RES) has been introduced as a viable solution to offer cheap and clean energy to customers in decentralized power system. D- RES can offer local generation to flexible customers based on their servicing deadline and constraints, benefiting both D- RES owners and customers in terms of providing economic revenue and reducing the cost of supplied energy. In this context, this paper proposes a dynamic matching framework using model predictive control (MPC) to enable local energy sharing in power system operation. The proposed matching framework matches flexible customers with D- RES to maximize social welfare in the matching market, while meeting the customers' servicing constraints prior to their deadline. Simulations are conducted on a test power system using multiple matching algorithms across different load and generation scenarios and the results highlighted the efficiency of proposed framework in matching flexible customers with the appropriate supply sources to maximize social welfare in the matching market.
  5. In this paper, we investigate a novel control architecture and algorithm for incorporating preadaption functions. We propose a preadaptation mechanism that can augment any adaptive control scheme and improve its resilience. We also propose a preadaptation learner that learns the preadaption function with experience, which removes the complexity of designing and fine tuning the preadaptation function specific to the system to be controlled. Through simulations of a flight control system we illustrate the effectiveness of the preadaptation mechanism in improving the adaptation. We show that the preadaptation mechanism we propose can reduce the peak of the response by as much as $50\%$. The scenarios we present also show that the preadaptation mechanism is effective across a wide range of scenarios suggesting that the mechanism is reliable.