skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evolution of disc thickness in simulated high-redshift galaxies
ABSTRACT We study the growth of stellar discs of Milky Way-sized galaxies using a suite of cosmological simulations. We calculate the half-mass axis lengths and axis ratios of stellar populations split by age in galaxies with stellar mass $$M_{*}=10^7\!-\!10^{10}\, \mathrm{M}_{\odot }$$ at redshifts z > 1.5. We find that in our simulations stars always form in relatively thin discs, and at ages below 100 Myr are contained within half-mass height z1/2 ∼ 0.1 kpc and short-to-long axial ratio z1/2/x1/2 ∼ 0.15. Disc thickness increases with the age of stellar population, reaching median z1/2 ∼ 0.8 kpc and z1/2/x1/2 ∼ 0.6 for stars older than 500 Myr. We trace the same group of stars over the simulation snapshots and show explicitly that their intrinsic shape grows more spheroidal over time. We identify a new mechanism that contributes to the observed disc thickness: rapid changes in the orientation of the galactic plane mix the configuration of young stars. The frequently mentioned ‘upside-down’ formation scenario of galactic discs, which posits that young stars form in already thick discs at high redshift, may be missing this additional mechanism of quick disc inflation. The actual formation of stars within a fairly thin plane is consistent with the correspondingly flat configuration of dense molecular gas that fuels star formation.  more » « less
Award ID(s):
1909063
PAR ID:
10313263
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
502
Issue:
1
ISSN:
0035-8711
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We use FIRE simulations to study disc formation in z ∼ 0, Milky Way-mass galaxies, and conclude that a key ingredient for the formation of thin stellar discs is the ability for accreting gas to develop an aligned angular momentum distribution via internal cancellation prior to joining the galaxy. Among galaxies with a high fraction ($$\gt 70{{\ \rm per\ cent}}$$) of their young stars in a thin disc (h/R ∼ 0.1), we find that: (i) hot, virial-temperature gas dominates the inflowing gas mass on halo scales (≳20 kpc), with radiative losses offset by compression heating; (ii) this hot accretion proceeds until angular momentum support slows inward motion, at which point the gas cools to $$\lesssim 10^4\, {\rm K}$$; (iii) prior to cooling, the accreting gas develops an angular momentum distribution that is aligned with the galaxy disc, and while cooling transitions from a quasi-spherical spatial configuration to a more-flattened, disc-like configuration. We show that the existence of this ‘rotating cooling flow’ accretion mode is strongly correlated with the fraction of stars forming in a thin disc, using a sample of 17 z ∼ 0 galaxies spanning a halo mass range of 1010.5 M⊙ ≲ Mh ≲ 1012 M⊙ and stellar mass range of 108 M⊙ ≲ M⋆ ≲ 1011 M⊙. Notably, galaxies with a thick disc or irregular morphology do not undergo significant angular momentum alignment of gas prior to accretion and show no correspondence between halo gas cooling and flattening. Our results suggest that rotating cooling flows (or, more generally, rotating subsonic flows) that become coherent and angular momentum-supported prior to accretion on to the galaxy are likely a necessary condition for the formation of thin, star-forming disc galaxies in a ΛCDM universe. 
    more » « less
  2. ABSTRACT It remains a major challenge to derive a theory of cloud-scale ($$\lesssim100$$ pc) star formation and feedback, describing how galaxies convert gas into stars as a function of the galactic environment. Progress has been hampered by a lack of robust empirical constraints on the giant molecular cloud (GMC) lifecycle. We address this problem by systematically applying a new statistical method for measuring the evolutionary timeline of the GMC lifecycle, star formation, and feedback to a sample of nine nearby disc galaxies, observed as part of the PHANGS-ALMA survey. We measure the spatially resolved (∼100 pc) CO-to-H α flux ratio and find a universal de-correlation between molecular gas and young stars on GMC scales, allowing us to quantify the underlying evolutionary timeline. GMC lifetimes are short, typically $$10\!-\!30\,{\rm Myr}$$, and exhibit environmental variation, between and within galaxies. At kpc-scale molecular gas surface densities $$\Sigma _{\rm H_2}\ge 8\,\rm {M_\odot}\,{{\rm pc}}^{-2}$$, the GMC lifetime correlates with time-scales for galactic dynamical processes, whereas at $$\Sigma _{\rm H_2}\le 8\,\rm {M_\odot}\,{{\rm pc}}^{-2}$$ GMCs decouple from galactic dynamics and live for an internal dynamical time-scale. After a long inert phase without massive star formation traced by H α (75–90 per cent of the cloud lifetime), GMCs disperse within just $$1\!-\!5\,{\rm Myr}$$ once massive stars emerge. The dispersal is most likely due to early stellar feedback, causing GMCs to achieve integrated star formation efficiencies of 4–10 per cent. These results show that galactic star formation is governed by cloud-scale, environmentally dependent, dynamical processes driving rapid evolutionary cycling. GMCs and H ii regions are the fundamental units undergoing these lifecycles, with mean separations of $$100\!-\!300\,{{\rm pc}}$$ in star-forming discs. Future work should characterize the multiscale physics and mass flows driving these lifecycles. 
    more » « less
  3. ABSTRACT We study the kinematics of stars both at their formation and today within 14 Milky Way (MW)-mass galaxies from the FIRE-2 cosmological zoom-in simulations. We quantify the relative importance of cosmological disc settling and post-formation dynamical heating. We identify three eras: a Pre-Disc Era (typically ≳ 8 Gyr ago), when stars formed on dispersion-dominated orbits; an Early-Disc Era (≈8–4 Gyr ago), when stars started to form on rotation-dominated orbits but with high velocity dispersion, σform; and a Late-Disc Era (≲ 4 Gyr ago), when stars formed with low σform. σform increased with time during the Pre-Disc Era, peaking ≈8 Gyr ago, then decreased throughout the Early-Disc Era as the disc settled and remained low throughout the Late-Disc Era. By contrast, the dispersion measured today, σnow, increases monotonically with age because of stronger post-formation heating for Pre-Disc stars. Importantly, most of σnow was in place at formation, not added post-formation, for stars younger than ≈10 Gyr. We compare the evolution of the three velocity components: at all times, σR, form > σϕ, form > σZ, form. Post-formation heating primarily increased σR at ages ≲ 4 Gyr but acted nearly isotropically for older stars. The kinematics of young stars in FIRE-2 broadly agree with the range observed across the MW, M31, M33, and PHANGS-MUSE galaxies. The lookback time that the disc began to settle correlates with its dynamical state today: earlier-settling galaxies currently form colder discs. Including stellar cosmic-ray feedback does not significantly change disc rotational support at fixed stellar mass. 
    more » « less
  4. null (Ed.)
    ABSTRACT We investigate thin and thick stellar disc formation in Milky Way-mass galaxies using 12 FIRE-2 cosmological zoom-in simulations. All simulated galaxies experience an early period of bursty star formation that transitions to a late-time steady phase of near-constant star formation. Stars formed during the late-time steady phase have more circular orbits and thin-disc-like morphology at z = 0, while stars born during the bursty phase have more radial orbits and thick-disc structure. The median age of thick-disc stars at z = 0 correlates strongly with this transition time. We also find that galaxies with an earlier transition from bursty to steady star formation have a higher thin-disc fractions at z = 0. Three of our systems have minor mergers with Large Magellanic Cloud-size satellites during the thin-disc phase. These mergers trigger short starbursts but do not destroy the thin disc nor alter broad trends between the star formation transition time and thin/thick-disc properties. If our simulations are representative of the Universe, then stellar archaeological studies of the Milky Way (or M31) provide a window into past star formation modes in the Galaxy. Current age estimates of the Galactic thick disc would suggest that the Milky Way transitioned from bursty to steady phase ∼6.5 Gyr ago; prior to that time the Milky Way likely lacked a recognizable thin disc. 
    more » « less
  5. ABSTRACT We investigate the formation of Milky Way–mass galaxies using FIRE-2 ΛCDM cosmological zoom-in simulations by studying the orbital evolution of stars formed in the main progenitor of the galaxy, from birth to the present day. We classify in situ stars as isotropic spheroid, thick-disc, and thin-disc according to their orbital circularities and show that these components are assembled in a time-ordered sequence from early to late times, respectively. All simulated galaxies experience an early phase of bursty star formation that transitions to a late-time steady phase. This transition coincides with the time that the inner CGM virializes. During the early bursty phase, galaxies have irregular morphologies and new stars are born on radial orbits; these stars evolve into an isotropic spheroidal population today. The bulk of thick-disc stars form at intermediate times, during a clumpy-disc ‘spin-up’ phase, slightly later than the peak of spheroid formation. At late times, once the CGM virializes and star formation ‘cools down,’ stars are born on circular orbits within a narrow plane. Those stars mostly inhabit thin discs today. Broadly speaking, stars with disc-like or spheroid-like orbits today were born that way. Mergers on to discs and secular processes do affect kinematics in our simulations, but play only secondary roles in populating thick-disc and in situ spheroid populations at z = 0. The age distributions of spheroid, thick disc, and thin disc populations scale self-similarly with the steady-phase transition time, which suggests that morphological age dating can be linked to the CGM virialization time in galaxies. 
    more » « less