skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pipeline PSRO: A Scalable Approach for Finding Approximate Nash Equilibria in Large Games
challenging when the number of information states is large. Policy Space Response Oracles (PSRO) is a deep reinforcement learning algorithm grounded in game theory that is guaranteed to converge to an approximate Nash equilibrium. However, PSRO requires training a reinforcement learning policy at each iteration, making it too slow for large games. We show through counterexamples and experiments that DCH and Rectified PSRO, two existing approaches to scaling up PSRO, fail to converge even in small games. We introduce Pipeline PSRO (P2SRO), the first scalable PSRO-based method for finding approximate Nash equilibria in large zero-sum imperfect-information games. P2SRO is able to parallelize PSRO with convergence guarantees by maintaining a hierarchical pipeline of reinforcement learning workers, each training against the policies generated by lower levels in the hierarchy. We show that unlike existing methods, P2SRO converges to an approximate Nash equilibrium, and does so faster as the number of parallel workers increases, across a variety of imperfect information games. We also introduce an open-source environment for Barrage Stratego, a variant of Stratego with an approximate game tree complexity of 1050. P2SRO is able to achieve state-of-theart performance on Barrage Stratego and beats all existing bots. Experiment code is available at https://github.com/JBLanier/pipeline-psro.  more » « less
Award ID(s):
1839429
PAR ID:
10313269
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Advances in neural information processing systems
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Policy Space Response Oracles (PSRO) is a reinforcement learning (RL) algo- rithm for two-player zero-sum games that has been empirically shown to find approximate Nash equilibria in large games. Although PSRO is guaranteed to converge to an approximate Nash equilibrium and can handle continuous actions, it may take an exponential number of iterations as the number of information states (infostates) grows. We propose Extensive-Form Double Oracle (XDO), an extensive-form double oracle algorithm for two-player zero-sum games that is guar- anteed to converge to an approximate Nash equilibrium linearly in the number of infostates. Unlike PSRO, which mixes best responses at the root of the game, XDO mixes best responses at every infostate. We also introduce Neural XDO (NXDO), where the best response is learned through deep RL. In tabular experiments on Leduc poker, we find that XDO achieves an approximate Nash equilibrium in a number of iterations an order of magnitude smaller than PSRO. Experiments on a modified Leduc poker game and Oshi-Zumo show that tabular XDO achieves a lower exploitability than CFR with the same amount of computation. We also find that NXDO outperforms PSRO and NFSP on a sequential multidimensional continuous-action game. NXDO is the first deep RL method that can find an approximate Nash equilibrium in high-dimensional continuous-action sequential games. Experiment code is available at https://github.com/indylab/nxdo. 
    more » « less
  2. Policy Space Response Oracles (PSRO) interleaves empirical game-theoretic analysis with deep reinforcement learning (DRL) to solve games too complex for traditional analytic methods. Tree-exploiting PSRO (TE-PSRO) is a variant of this approach that iteratively builds a coarsened empirical game model in extensive form using data obtained from querying a simulator that represents a detailed description of the game.We make two main methodological advances to TE-PSRO that enhance its applicability to complex games of imperfect information. First, we introduce a scalable representation for the empirical game tree where edges correspond to implicit policies learned through DRL. These policies cover conditions in the underlying game abstracted in the game model, supporting sustainable growth of the tree over epochs. Second, we leverage extensive form in the empirical model by employing refined Nash equilibria to direct strategy exploration. To enable this, we give a modular and scalable algorithm based on generalized backward induction for computing a subgame perfect equilibrium (SPE) in an imperfect-information game. We experimentally evaluate our approach on a suite of games including an alternating-offer bargaining game with outside offers; our results demonstrate that TE-PSRO converges toward equilibrium faster when new strategies are generated based on SPE rather than Nash equilibrium, and with reasonable time/memory requirements for the growing empirical model. 
    more » « less
  3. Recent algorithms have achieved superhuman performance at a number of twoplayer zero-sum games such as poker and go. However, many real-world situations are multi-player games. Zero-sum two-team games, such as bridge and football, involve two teams where each member of the team shares the same reward with every other member of that team, and each team has the negative of the reward of the other team. A popular solution concept in this setting, called TMECor, assumes that teams can jointly correlate their strategies before play, but are not able to communicate during play. This setting is harder than two-player zerosum games because each player on a team has different information and must use their public actions to signal to other members of the team. Prior works either have game-theoretic guarantees but only work in very small games, or are able to scale to large games but do not have game-theoretic guarantees. In this paper we introduce two algorithms: Team-PSRO, an extension of PSRO from twoplayer games to team games, and Team-PSRO Mix-and-Match which improves upon Team PSRO by better using population policies. In Team-PSRO, in every iteration both teams learn a joint best response to the opponent’s meta-strategy via reinforcement learning. As the reinforcement learning joint best response approaches the optimal best response, Team-PSRO is guaranteed to converge to a TMECor. In experiments on Kuhn poker and Liar’s Dice, we show that a tabular version of Team-PSRO converges to TMECor, and a version of Team PSRO using deep cooperative reinforcement learning beats self-play reinforcement learning in the large game of Google Research Football. 
    more » « less
  4. Nash Equilibrium (NE) is the canonical solution concept of game theory, which provides an elegant tool to understand the rationalities. Though mixed strategy NE exists in any game with finite players and actions, computing NE in two- or multi-player general-sum games is PPAD-Complete. Various alternative solutions, e.g., Correlated Equilibrium (CE), and learning methods, e.g., fictitious play (FP), are proposed to approximate NE. For convenience, we call these methods as ``inexact solvers'', or ``solvers'' for short. However, the alternative solutions differ from NE and the learning methods generally fail to converge to NE. Therefore, in this work, we propose REinforcement Nash Equilibrium Solver (RENES), which trains a single policy to modify the games with different sizes and applies the solvers on the modified games where the obtained solution is evaluated on the original games. Specifically, our contributions are threefold. i) We represent the games as alpha-rank response graphs and leverage graph neural network (GNN) to handle the games with different sizes as inputs; ii) We use tensor decomposition, e.g., canonical polyadic (CP), to make the dimension of modifying actions fixed for games with different sizes; iii) We train the modifying strategy for games with the widely-used proximal policy optimization (PPO) and apply the solvers to solve the modified games, where the obtained solution is evaluated on original games. Extensive experiments on large-scale normal-form games show that our method can further improve the approximation of NE of different solvers, i.e., alpha-rank, CE, FP and PRD, and can be generalized to unseen games. 
    more » « less
  5. We explore the use of policy approximations to reduce the computational cost of learning Nash equilibria in zero-sum stochastic games. We propose a new Q-learning type algorithm that uses a sequence of entropy-regularized soft policies to approximate the Nash policy during the Q-function updates. We prove that under certain conditions, by updating the regularized Q-function, the algorithm converges to a Nash equilibrium. We also demonstrate the proposed algorithm’s ability to transfer previous training experiences, enabling the agents to adapt quickly to new environments. We provide a dynamic hyper-parameter scheduling scheme to further expedite convergence. Empirical results applied to a number of stochastic games verify that the proposed algorithm converges to the Nash equilibrium while exhibiting a major speed-up over existing algorithms. 
    more » « less