skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Phage-encoded sigma factors alter bacterial dormancy
By entering a reversible state of reduced metabolic activity, dormant microorganisms are able to tolerate suboptimal conditions that would otherwise reduce their fitness. Dormancy may also benefit bacteria by serving as a refuge from parasitic infections. Here we focus on dormancy in the Firmicutes, where endospore development is transcriptionally regulated by the expression of sigma factors. A disruption of this process could influence the survivorship and reproduction of phages that infect spore-forming hosts with implications for coevolutionary dynamics. Here, we characterized the distribution and diversity of sigma factors in nearly 3,500 phage genomes. Homologs of sporulation-specific sigma factors were identified in phages that infect spore-forming hosts. Unlike sigma factors required for phage reproduction, the sporulation-like sigma factors were non-essential for lytic infection. However, when expressed in the spore-forming Bacillus subtilis, sigma factors from phages activated the bacterial sporulation gene network and reduced spore yield. Our findings suggest that the acquisition of host-like transcriptional regulators may allow phages to manipulate a complex and ancient trait in one of the most abundant cell types on Earth.  more » « less
Award ID(s):
1934554
PAR ID:
10313283
Author(s) / Creator(s):
Date Published:
Journal Name:
bioRxiv
ISSN:
2692-8205
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Imperiale, Michael J. (Ed.)
    ABSTRACT By entering a reversible state of reduced metabolic activity, dormant microorganisms are able to tolerate suboptimal conditions that would otherwise reduce their fitness. Dormancy may also benefit bacteria by serving as a refuge from parasitic infections. Here, we focus on dormancy in the Bacillota , where endospore development is transcriptionally regulated by the expression of sigma factors. A disruption of this process could influence the survivorship or reproduction of phages that infect spore-forming hosts with implications for coevolutionary dynamics. We characterized the distribution of sigma factors in over 4,000 genomes of diverse phages capable of infecting hosts that span the bacterial domain. From this, we identified homologs of sporulation-specific sigma factors in phages that infect spore-forming hosts. Unlike sigma factors required for phage reproduction, we provide evidence that sporulation-like sigma factors are nonessential for lytic infection. However, when expressed in the spore-forming Bacillus subtilis , some of these phage-derived sigma factors can activate the bacterial sporulation gene network and lead to a reduction in spore yield. Our findings suggest that the acquisition of host-like transcriptional regulators may allow phages to manipulate a complex and ancient trait in one of the most abundant cell types on Earth. IMPORTANCE As obligate parasites, phages exert strong top-down pressure on host populations with eco-evolutionary implications for community dynamics and ecosystem functioning. The process of phage infection, however, is constrained by bottom-up processes that influence the energetic and nutritional status of susceptible hosts. Many phages have acquired auxiliary genes from bacteria, which can be used to exploit host metabolism with consequences for phage fitness. In this study, we demonstrate that phages infecting spore-forming bacteria carry homologs of sigma factors, which their hosts use to orchestrate gene expression during spore development. By tapping into regulatory gene networks, phages may manipulate the physiology and survival strategies of nongrowing bacteria in ways that influence host-parasite coevolution. 
    more » « less
  2. I. ABSTRACT Bacteriophage (phage) infect, lyse, and propagate within bacterial populations. However, physiological changes in bacterial cell state can protect against infection even within genetically susceptible populations. One such example is the generation of endospores byBacillusand its relatives, characterized by a reversible state of reduced metabolic activity that protects cells against stressors including desiccation, energy limitation, antibiotics, and infection by phage. Here we tested how sporulation at the cellular scale impacts phage dynamics at population scales when propagating amongstB. subtilisin spatially structured environments. Initially, we found that plaques resulting from infection and lysis were approximately 3-fold smaller on lawns of sporulating wild-type bacteria vs. non-sporulating bacteria. Notably, plaque size was reduced due to an early termination of expanding phage plaques rather than the reduction of plaque growth speed. Microscopic imaging of the plaques revealed ‘sporulation rings’, i.e., spores enriched around plaque edges relative to phage-free regions. We developed a series of mathematical models of phage, bacteria, spore, and small molecules that recapitulate plaque dynamics and identify a putative mechanism: sporulation rings arise in response to lytic activity. In aggregate, sporulation rings inhibit phage from accessing susceptible cells even when sufficient resources are available for further infection and lysis. Together, our findings identify how dormancy can self-limit phage infections at population scales, opening new avenues to explore the entangled fates of phages and their bacterial hosts in environmental and therapeutic contexts. 
    more » « less
  3. Bacteriophage host range is a result of the interactions between phages and their hosts. For phage therapy, phages with a broader host range are desired so that a phage can infect and kill the broadest range of pathogen strains or related species possible. A common, but not well-tested, belief is that using multiple hosts during the phage isolation will make the isolation of broader host range phage more likely. Using a Bacillus cereus group system, we compared the host ranges of phages isolated on one or four hosts and found that there was no difference in the breadth of host ranges of the isolated phages. Both narrow and broader host range phage were also equally likely to be isolated from either isolation procedure. While there are methods that reliably isolate broader host range phages, such as sequential host isolation, and there are other reasons to use multiple hosts during isolation, multiple hosts are not a consistent way to obtain broader host range phages. 
    more » « less
  4. Dudley, Edward G. (Ed.)
    ABSTRACT Bacteriophages (phages) are currently available for use by the food industry to control the foodborne pathogen Listeria monocytogenes . Although phage biocontrols are effective under specific conditions, their use can select for phage-resistant bacteria that repopulate phage-treated environments. Here, we performed short-term coevolution experiments to investigate the impact of single phages and a two-phage cocktail on the regrowth of phage-resistant L. monocytogenes and the adaptation of the phages to overcome this resistance. We used whole-genome sequencing to identify mutations in the target host that confer phage resistance and in the phages that alter host range. We found that infections with Listeria phages LP-048, LP-125, or a combination of both select for different populations of phage-resistant L. monocytogenes bacteria with different regrowth times. Phages isolated from the end of the coevolution experiments were found to have gained the ability to infect phage-resistant mutants of L. monocytogenes and L. monocytogenes strains previously found to be broadly resistant to phage infection. Phages isolated from coinfected cultures were identified as recombinants of LP-048 and LP-125. Interestingly, recombination events occurred twice independently in a locus encoding two proteins putatively involved in DNA binding. We show that short-term coevolution of phages and their hosts can be utilized to obtain mutant and recombinant phages with adapted host ranges. These laboratory-evolved phages may be useful for limiting the emergence of phage resistance and for targeting strains that show general resistance to wild-type (WT) phages. IMPORTANCE Listeria monocytogenes is a life-threatening bacterial foodborne pathogen that can persist in food processing facilities for years. Phages can be used to control L. monocytogenes in food production, but phage-resistant bacterial subpopulations can regrow in phage-treated environments. Coevolution experiments were conducted on a Listeria phage-host system to provide insight into the genetic variation that emerges in both the phage and bacterial host under reciprocal selective pressure. As expected, mutations were identified in both phage and host, but additionally, recombination events were shown to have repeatedly occurred between closely related phages that coinfected L. monocytogenes . This study demonstrates that in vitro evolution of phages can be utilized to expand the host range and improve the long-term efficacy of phage-based control of L. monocytogenes . This approach may also be applied to other phage-host systems for applications in biocontrol, detection, and phage therapy. 
    more » « less
  5. ABSTRACT Bacteriophages are the most abundant and diverse biological entities on the planet, and new phage genomes are being discovered at a rapid pace. As more phage genomes are published, new methods are needed for placing these genomes in an ecological and evolutionary context. Phages are difficult to study by phylogenetic methods, because they exchange genes regularly, and no single gene is conserved across all phages. Here, we demonstrate how gene-level networks can provide a high-resolution view of phage genetic diversity and offer a novel perspective on virus ecology. We focus our analyses on virus host range and show how network topology corresponds to host relatedness, how to find groups of genes with the strongest host-specific signatures, and how this perspective can complement phage host prediction tools. We discuss extensions of gene network analysis to predicting the emergence of phages on new hosts, as well as applications to features of phage biology beyond host range. IMPORTANCE Bacteriophages (phages) are viruses that infect bacteria, and they are critical drivers of bacterial evolution and community structure. It is generally difficult to study phages by using tree-based methods, because gene exchange is common, and no single gene is shared among all phages. Instead, networks offer a means to compare phages while placing them in a broader ecological and evolutionary context. In this work, we build a network that summarizes gene sharing across phages and test how a key constraint on phage ecology, host range, corresponds to the structure of the network. We find that the network reflects the relatedness among phage hosts, and phages with genes that are closer in the network are likelier to infect similar hosts. This approach can also be used to identify genes that affect host range, and we discuss possible extensions to analyze other aspects of viral ecology. 
    more » « less