skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Phage infection fronts trigger early sporulation and collective defense in bacterial populations
I. ABSTRACT Bacteriophage (phage) infect, lyse, and propagate within bacterial populations. However, physiological changes in bacterial cell state can protect against infection even within genetically susceptible populations. One such example is the generation of endospores byBacillusand its relatives, characterized by a reversible state of reduced metabolic activity that protects cells against stressors including desiccation, energy limitation, antibiotics, and infection by phage. Here we tested how sporulation at the cellular scale impacts phage dynamics at population scales when propagating amongstB. subtilisin spatially structured environments. Initially, we found that plaques resulting from infection and lysis were approximately 3-fold smaller on lawns of sporulating wild-type bacteria vs. non-sporulating bacteria. Notably, plaque size was reduced due to an early termination of expanding phage plaques rather than the reduction of plaque growth speed. Microscopic imaging of the plaques revealed ‘sporulation rings’, i.e., spores enriched around plaque edges relative to phage-free regions. We developed a series of mathematical models of phage, bacteria, spore, and small molecules that recapitulate plaque dynamics and identify a putative mechanism: sporulation rings arise in response to lytic activity. In aggregate, sporulation rings inhibit phage from accessing susceptible cells even when sufficient resources are available for further infection and lysis. Together, our findings identify how dormancy can self-limit phage infections at population scales, opening new avenues to explore the entangled fates of phages and their bacterial hosts in environmental and therapeutic contexts.  more » « less
Award ID(s):
1934554 1934586 2022049
PAR ID:
10569575
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Imperiale, Michael J. (Ed.)
    ABSTRACT By entering a reversible state of reduced metabolic activity, dormant microorganisms are able to tolerate suboptimal conditions that would otherwise reduce their fitness. Dormancy may also benefit bacteria by serving as a refuge from parasitic infections. Here, we focus on dormancy in the Bacillota , where endospore development is transcriptionally regulated by the expression of sigma factors. A disruption of this process could influence the survivorship or reproduction of phages that infect spore-forming hosts with implications for coevolutionary dynamics. We characterized the distribution of sigma factors in over 4,000 genomes of diverse phages capable of infecting hosts that span the bacterial domain. From this, we identified homologs of sporulation-specific sigma factors in phages that infect spore-forming hosts. Unlike sigma factors required for phage reproduction, we provide evidence that sporulation-like sigma factors are nonessential for lytic infection. However, when expressed in the spore-forming Bacillus subtilis , some of these phage-derived sigma factors can activate the bacterial sporulation gene network and lead to a reduction in spore yield. Our findings suggest that the acquisition of host-like transcriptional regulators may allow phages to manipulate a complex and ancient trait in one of the most abundant cell types on Earth. IMPORTANCE As obligate parasites, phages exert strong top-down pressure on host populations with eco-evolutionary implications for community dynamics and ecosystem functioning. The process of phage infection, however, is constrained by bottom-up processes that influence the energetic and nutritional status of susceptible hosts. Many phages have acquired auxiliary genes from bacteria, which can be used to exploit host metabolism with consequences for phage fitness. In this study, we demonstrate that phages infecting spore-forming bacteria carry homologs of sigma factors, which their hosts use to orchestrate gene expression during spore development. By tapping into regulatory gene networks, phages may manipulate the physiology and survival strategies of nongrowing bacteria in ways that influence host-parasite coevolution. 
    more » « less
  2. Abstract Phages—viruses that infect bacteria—have evolved over billions of years to overcome bacterial defenses. Temperate phage, upon infection, can “choose” between two pathways: lysis—in which the phage create multiple new phage particles, which are then liberated by cell lysis, and lysogeny—where the phage’s genetic material is added to the bacterial DNA and transmitted to the bacterial progeny. It was recently discovered that some phages can read information from the environment related to the density of bacteria or the number of nearby infection attempts. Such information may help phage make the right choice between the two pathways. Here, we develop a theoretical model that allows an infecting phage to change its strategy (i.e. the ratio of lysis to lysogeny) depending on an outside signal, and we find the optimal strategy that maximizes phage proliferation. While phages that exploit extra information naturally win in competition against phages with a fixed strategy, there may be costs to information, e.g. as the necessary extra genes may affect the growth rate of a lysogen or the burst size of new phage for the lysis pathway. Surprisingly, even when phages pay a large price for information, they can still maintain an advantage over phages that lack this information, indicating the high benefit of intelligence gathering in phage–bacteria warfare. 
    more » « less
  3. Abstract To overtake competitors, microbes produce and secrete secondary metabolites that kill neighboring cells and sequester nutrients. This natural product-mediated competition likely evolved in complex microbial communities that included viral pathogens. From this ecological context, we hypothesized that microbes secrete metabolites that “weaponize” natural pathogens (i.e., bacteriophages) to lyse their competitors. Indeed, we discovered a bacterial secondary metabolite that sensitizes other bacteria to phage infection. We found that this metabolite provides the producer (aStreptomycessp.) with a fitness advantage over its competitor (Bacillus subtilis) by promoting phage infection. The phage-promoting metabolite, coelichelin, sensitizedB. subtilisto a wide panel of lytic phages, and it did so by preventing the early stages of sporulation through iron sequestration. Beyond coelichelin, other natural products may provide phage-mediated competitive advantages to their producers—either by inhibiting sporulation or through yet-unknown mechanisms. 
    more » « less
  4. By entering a reversible state of reduced metabolic activity, dormant microorganisms are able to tolerate suboptimal conditions that would otherwise reduce their fitness. Dormancy may also benefit bacteria by serving as a refuge from parasitic infections. Here we focus on dormancy in the Firmicutes, where endospore development is transcriptionally regulated by the expression of sigma factors. A disruption of this process could influence the survivorship and reproduction of phages that infect spore-forming hosts with implications for coevolutionary dynamics. Here, we characterized the distribution and diversity of sigma factors in nearly 3,500 phage genomes. Homologs of sporulation-specific sigma factors were identified in phages that infect spore-forming hosts. Unlike sigma factors required for phage reproduction, the sporulation-like sigma factors were non-essential for lytic infection. However, when expressed in the spore-forming Bacillus subtilis, sigma factors from phages activated the bacterial sporulation gene network and reduced spore yield. Our findings suggest that the acquisition of host-like transcriptional regulators may allow phages to manipulate a complex and ancient trait in one of the most abundant cell types on Earth. 
    more » « less
  5. ABSTRACT Multidrug-resistant (MDR) bacteria pose a significant public health challenge, underscoring the urgent need for innovative antibacterial strategies. Bacteriophages (phages), viruses that specifically target bacteria, offer a promising alternative; however, bacterial immune defenses often limit their effectiveness. Developing small-molecule inhibitors of these defenses can facilitate mechanistic studies and serve as adjuvants to enhance phage therapy. Here, we identify novel inhibitors targeting the bacterial cyclic oligonucleotide-based anti-phage signaling system (CBASS) effector Cap5. Cap5 is an HNH endonuclease activated by a cyclic nucleotide to degrade genomic DNA in virally infected cells, leading to cell death through abortive infection. Guided by the crystal structure of the Cap5 SAVED domain bound to its activating ligand, we performed structure-guided virtual screening to identify candidate inhibitors. Biochemical assays revealed that approximately 16% of the top docking hits exhibited inhibitory activity. Further cellular assays demonstrated that one potent compound could enterE. colicells and inhibit Cap5 activity. Our integrated approach—combining structure-based virtual screening with biochemical validation—provides a robust framework for discovering small-molecule inhibitors of bacterial immune defenses to advance adjunctive therapies and deepen our understanding of phage-bacteria interactions. 
    more » « less