Artificial intelligence (AI) has rapidly pervaded and reshaped almost all walks of life, but efforts to promote AI literacy in K-12 schools remain limited. There is a knowledge gap in how to prepare teachers to teach AI literacy in inclusive classrooms and how teacher-led classroom implementations can impact students. This paper reports a comparison study to investigate the effectiveness of an AI literacy curriculum when taught by classroom teachers. The experimental group included 89 middle school students who learned an AI literacy curriculum during regular school hours. The comparison group consisted of 69 students who did not learn the curriculum. Both groups completed the same pre and post-test. The results show that students in the experimental group developed a deeper understanding of AI concepts and more positive attitudes toward AI and its impact on future careers after the curriculum than those in the comparison group. This shows that the teacher-led classroom implementation successfully equipped students with a conceptual understanding of AI. Students achieved significant gains in recognizing how AI is relevant to their lives and felt empowered to thrive in the age of AI. Overall this study confirms the potential of preparing K-12 classroom teachers to offer AI education in classrooms in order to reach learners of diverse backgrounds and broaden participation in AI literacy education among young learners.
more »
« less
Curriculum to Broaden Participation in Cybersecurity for Middle School Teachers and Students
To both broaden and increase participation in any STEM field such as cybersecurity, we need to attract more students. Research shows that to do this, students need to be engaged with cybersecurity during middle school. There is a lack of age-appropriate and classroom-ready cybersecurity curriculum, however, and many teachers feel unprepared to teach the subject. To address this gap, the CyberMiSTS project team created a summer professional development workshop for middle school teachers that integrated a recent research-based understanding of cybersecurity into a curriculum that is accessible to both middle school students and their teachers. The project sought to encourage participation of a broad and diverse set of students in the field of cybersecurity by showing them how human relations play an important role in cybersecurity. We discuss our prior related work using branching web comics to introduce middle school students to cybersecurity concepts and careers, and the state of evidence-based research into effective approaches and methods for cybersecurity education. We identify challenges to broadening the pipeline for a truly diverse cybersecurity workforce that can meet industry’s need for cybersecurity professionals with a wide range of experience and skills. The paper introduces our approach for the teacher professional development workshop, maps how we designed the project to meet our research goals, and documents initial findings regarding what is needed to increase teacher self-efficacy about cybersecurity concepts and careers in a middle school classroom.
more »
« less
- Award ID(s):
- 1821753
- PAR ID:
- 10313321
- Date Published:
- Journal Name:
- 11th IEEE Integrated STEM Education Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Lu, Baochuan ; Johnson, Jeremiah W (Ed.)This paper presents the GenCyber Teacher Academy (GTA), a unique professional development program that provides Connecticut's high school teachers across various STEM disciplines with opportunities to explore cybersecurity concepts and incorporate them in their curriculum. Participating teachers experienced inquiry-based learning, focused classroom discourse, and collaborative learning that centered on GenCyber Cybersecurity Concepts. Results indicate GTA enabled teachers to reflect on best practices in incorporating cybersecurity concepts while promoting online safety. Moreover, GTA established a sustainable GenCyber Teacher Academy Teaching Learning Community of high school teachers supported by a community of practitioners that will collectively shape the future of cybersecurity in Connecticut.more » « less
-
Despite limited success in broadening participation in engineering with rural and Appalachian youth, there remain challenges such as misunderstandings around engineering careers, misalignments with youth’s sociocultural background, and other environmental barriers. In addition, middle school science teachers may be unfamiliar with engineering or how to integrate engineering concepts into science lessons. Furthermore, teachers interested in incorporating engineering into their curriculum may not have the time or resources to do so. The result may be single interventions such as a professional development workshop for teachers or a career day for students. However, those are unlikely to cause major change or sustained interest development. To address these challenges, we have undertaken our NSF ITEST project titled, Virginia Tech Partnering with Educators and Engineers in Rural Schools (VT PEERS). Through this project, we sought to improve youth awareness of and preparation for engineering related careers and educational pathways. Utilizing regular engagement in engineering-aligned classroom activities and culturally relevant programming, we sought to spark an interest with some students. In addition, our project involves a partnership with teachers, school districts, and local industry to provide a holistic and, hopefully, sustainable influence. By engaging over time we aspired to promote sustainability beyond this NSF project via increased teacher confidence with engineering related activities, continued integration within their science curriculum, and continued relationships with local industry. From the 2017-2020 school years the project has been in seven schools across three rural counties. Each year a grade level was added; that is, the teachers and students from the first year remained for all three years. Year 1 included eight 6th grade science teachers, year 2 added eight 7th grade science teachers, and year 3 added three 8th grade science teachers and a career and technology teacher. The number of students increased from over 500 students in year 1 to over 2500 in year 3. Our three industry partners have remained active throughout the project. During the third and final year in the classrooms, we focused on the sustainable aspects of the project. In particular, on how the intervention support has evolved each year based on data, support requests from the school divisions, and in scaffolding “ownership” of the engineering activities. Qualitative data were used to support our understanding of teachers’ confidence to incorporate engineering into their lessons plans and how their confidence changed over time. Noteworthy, our student data analysis resulted in an instrument change for the third year; however due to COVID, pre and post data was limited to schools who taught on a semester basis. Throughout the project we have utilized the ITEST STEM Workforce Education Helix model to support a pragmatic approach of our research informing our practice to enable an “iterative relationship between STEM content development and STEM career development activities… within the cultural context of schools, with teachers supported by professional development, and through programs supported by effective partnerships.” For example, over the course of the project, scaffolding from the University leading interventions to teachers leading interventions occurred.more » « less
-
The ongoing workforce shortage of skilled and diverse cybersecurity professionals coupled with the continued upward trend of cybercrime has led to an increased number of funding opportunities from the federal government to support projects focused on technical skills development. Significant emphasis is placed on academic transfer pathways and education-to-career pathways for students from K-12 to community college and beyond. Utilizing funding from multiple sources, faculty have intertwined grant project activities to increase awareness of cybersecurity careers and academic pathways, emphasizing digital forensics and incident response. The two grant projects, Cyber Up! and GenCyber Girls, aimed to develop college-level curriculum and cybersecurity workshops for female high school students. Project activities were synthesized to create a summer camp for high school students based on the curriculum developed for the college programs in digital forensics and incident response. The synergy between the projects has shown an increase in female participation in the digital forensics course and helped build interest in cybersecurity careers among K-12 students.more » « less
-
The purpose of this research study is to understand teacher experiences throughout their second year of engagement in the Virginia Tech Partnering with Educators and Engineers in Rural Schools partnership. This partnership is an assets-based community partnership in a rural environment between middle school teachers, regional industry, and university affiliates that is focused on implementing recurrent, hands-on, culturally relevant engineering activities for middle school students. This qualitative study uses constant comparative methodology informed by grounded theory on teacher interviews to capture both teacher experiences in the partnership as well as teacher-identified assets in their classrooms and school communities. Using the sensitizing concepts of pedagogical content knowledge, self-efficacy, and the Interconnected Model of Teacher Growth, this study found that while teachers experienced the program differently depending on their contextual setting of their schools, all teachers expressed shifts in their recognition of and value placed on community assets. Findings also suggest that teachers greatly value involving industry and university partners in the classroom to highlight the applications of engineering in their communities and support a reimagination of engineering conceptions and careers for both students and teachers. Teachers reported that the hands-on, team-based, culturally relevant engineering activities engaged learners and showcased individual strengths in ways they otherwise do not see exhibited in their traditional curriculum. The partnership ultimately allowed teachers to identify how assets in schools’ rural communities, beyond those previously identified within their schools, could aid them in further developing and implementing engineering activities. With teachers serving as role models for students, it is important to support teachers’ reimagination of engineering conceptions and integration into the classroom to ultimately increase students’ engineering engagement. Our findings highlight the value of community-based approaches in supporting engineering integration in the classroom and describe the assets that teachers note as being the most significant in their community.more » « less