- Award ID(s):
- 1920740
- PAR ID:
- 10313391
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 116
- Issue:
- 36
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Strong coupling between light and elementary excitations is emerging as a powerful tool to engineer the properties of solid-state systems. Spin-correlated excitations that couple strongly to optical cavities promise control over collective quantum phenomena such as magnetic phase transitions, but their suitable electronic resonances are yet to be found. Here, we report strong light–matter coupling in NiPS3, a van der Waals antiferromagnet with highly correlated electronic degrees of freedom. A previously unobserved class of polaritonic quasiparticles emerges from the strong coupling between its spin-correlated excitons and the photons inside a microcavity. Detailed spectroscopic analysis in conjunction with a microscopic theory provides unique insights into the origin and interactions of these exotic magnetically coupled excitations. Our work introduces van der Waals magnets to the field of strong light–matter physics and provides a path towards the design and control of correlated electron systems via cavity quantum electrodynamics.more » « less
-
Abstract The tuneability and control of quantum nanostructures in two-dimensional materials offer promising perspectives for their use in future electronics. It is hence necessary to analyze quantum transport in such nanostructures. Material properties such as a complex dispersion, topology, and charge carriers with multiple degrees of freedom, are appealing for novel device functionalities but complicate their theoretical description. Here, we study quantum tunnelling transport across a few-electron bilayer graphene quantum dot. We demonstrate how to uniquely identify single- and two-electron dot states’ orbital, spin, and valley composition from differential conductance in a finite magnetic field. Furthermore, we show that the transport features manifest splittings in the dot’s spin and valley multiplets induced by interactions and magnetic field (the latter splittings being a consequence of bilayer graphene’s Berry curvature). Our results elucidate spin- and valley-dependent tunnelling mechanisms and will help to utilize bilayer graphene quantum dots, e.g., as spin and valley qubits.
-
Molecules under strong or ultra-strong light–matter coupling present an intriguing route to modify chemical structure, properties, and reactivity. A rigorous theoretical treatment of such systems requires handling matter and photon degrees of freedom on an equal quantum mechanical footing. In the regime of molecular electronic strong or ultra-strong coupling to one or a few molecules, it is desirable to treat the molecular electronic degrees of freedom using the tools of ab initio quantum chemistry, yielding an approach referred to as ab initio cavity quantum electrodynamics (ai-QED), where the photon degrees of freedom are treated at the level of cavity QED. We analyze two complementary approaches to ai-QED: (1) a parameterized ai-QED, a two-step approach where the matter degrees of freedom are computed using existing electronic structure theories, enabling the construction of rigorous ai-QED Hamiltonians in a basis of many-electron eigenstates, and (2) self-consistent ai-QED, a one-step approach where electronic structure methods are generalized to include coupling between electronic and photon degrees of freedom. Although these approaches are equivalent in their exact limits, we identify a disparity between the projection of the two-body dipole self-energy operator that appears in the parameterized approach and its exact counterpart in the self-consistent approach. We provide a theoretical argument that this disparity resolves only under the limit of a complete orbital basis and a complete many-electron basis for the projection. We present numerical results highlighting this disparity and its resolution in a particularly simple molecular system of helium hydride cation, where it is possible to approach these two complete basis limits simultaneously. In this same helium hydride system, we examine and compare the practical issue of the computational cost required to converge each approach toward the complete orbital and many-electron bases limit. Finally, we assess the aspect of photonic convergence for polar and charged species, finding comparable behavior between parameterized and self-consistent approaches.
-
Quantum reference frames are expected to differ from classical reference frames because they have to implement typical quantum features such as fluctuations and correlations. Here, we show that fluctuations and correlations of reference variables, in particular of time, are restricted by their very nature of being used for reference. Mathematically, this property is implemented by imposing constraints on the system to make sure that reference variables are not physical degrees of freedom. These constraints not only relate physical degrees of freedom to reference variables in order to describe their behavior, they also restrict quantum fluctuations of reference variables and their correlations with system degrees of freedom. We introduce the notion of “almost-positive” states as a suitable mathematical method. An explicit application of their properties to examples of recent interest in quantum reference frames reveals previously unrecognized restrictions on possible frame–system interactions. While currently discussed clock models rely on assumptions that, as shown here, make them consistent as quantum reference frames, relaxing these assumptions will expose the models to new restrictions that appear to be rather strong. Almost-positive states also shed some light on a recent debate about the consistency of relational quantum mechanics.more » « less
-
The interplay of charge, spin, lattice, and orbital degrees of freedom in correlated materials often leads to rich and exotic properties. Recent studies have brought new perspectives to bosonic collective excitations in correlated materials. For example, inelastic neutron scattering experiments revealed non-trivial band topology for magnons and spin–orbit excitons (SOEs) in a quantum magnet CoTiO3(CTO). Here, we report phonon properties resulting from a combination of strong spin–orbit coupling, large crystal field splitting, and trigonal distortion in CTO. Specifically, the interaction between SOEs and phonons endows chirality to two
phonon modes and leads to large phonon magnetic moments observed in magneto-Raman spectra. The remarkably strong magneto-phononic effect originates from the hybridization of SOEs and phonons due to their close energy proximity. While chiral phonons have been associated with electronic topology in some materials, our work suggests opportunities may arise by exploring chiral phonons coupled to topological bosons.