The safety impacts of cooperative platooning in mixed traffic consisting of human-driven, con-nected, and connected-automated vehicles were evaluated. The cooperative platooning in mixed traffic control algorithm evaluated is the Cooperative Adaptive Cruise Control with unconnected Vehicle (CACCu) with an unconnected vehicle. Its safety and string stability were evaluated using a high-fidelity simulation based on real-world vehicle trajectories. An Adaptive Cruise Control (ACC) algorithm was selected for comparison purposes. The results indicate that the cooperative platooning in mixed traffic control algorithm (CACCu) maintains string stability and performs more safely than the ACC.
more »
« less
Data-Driven Forgetting and Discount Factors for Vehicle Speed Forecasting in Ecological Adaptive Cruise Control
Abstract This paper investigates temporal correlations in human driving behavior using real-world driving to improve speed forecasting accuracy. These correlations can point to a measurement weighting function with two parameters: a forgetting factor for past speed measurements that the vehicle itself drove with, and a discount factor for the speeds of vehicles ahead based on information from vehicle-to-vehicle communication. The developed weighting approach is applied to a vehicle speed predictor using polynomial regression, a prediction method well-known in the literature. The performance of the developed approach is then assessed in both real-world and simulated traffic scenarios for accuracy and robustness. The new weighting method is applied to an ecological adaptive cruise control system, and its influence is analyzed on the prediction accuracy and the performance of the ecological adaptive cruise control in an electric vehicle powertrain model. The results show that the new prediction method improves energy saving from the eco-driving by up to 4.7% compared to a baseline least-square-based polynomial regression. This is a 10% improvement over the constant speed/acceleration model, a conventional speed predictor.
more »
« less
- Award ID(s):
- 1646019
- PAR ID:
- 10313399
- Date Published:
- Journal Name:
- Journal of Dynamic Systems, Measurement, and Control
- Volume:
- 144
- Issue:
- 1
- ISSN:
- 0022-0434
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this work, a prediction model is developed to illustrate the relationship between the internal parameters of a vehicle and its emissions. Vehicles emit various hazardous pollutants and understanding the influence of in-vehicle parameters is key to reducing their environmental impact. The values of the internal parameters were collected through the On-Board Diagnostics port, while the values of the emissions were measured from the exhaust pipe using Arduino sensors. The observed values were then matched based on the timestamps received from both sources and fit with both linear and polynomial regressions to accurately model the relationship between the internal parameters and pollutants. These models can then be used to estimate vehicle emissions based on the in-vehicle parameters, including vehicle speed, relative throttle position, and engine revolutions per minute. A wide majority of the relationships between various in-vehicle parameters and emissions show no observable correlation. There are observable correlations between carbon dioxide emissions and vehicle speed, as well as carbon dioxide emissions and engine revolutions per minute. These relationships were modelled using linear and polynomial regression with a resulting adjusted R-squared value of approximately 0.1.more » « less
-
Zonta, Daniele; Su, Zhongqing; Glisic, Branko (Ed.)With the rapid development of smart cities, interest in vehicle automation continues growing. Autonomous vehicles are becoming more and more popular among people and are considered to be the future of ground transportation. Autonomous vehicles, either with adaptive cruise control (ACC) or cooperative adaptive cruise control (CACC), provide many possibilities for smart transportation in a smart city. However, traditional vehicles and autonomous vehicles will have to share the same road systems until autonomous vehicles fully penetrate the market over the next few decades, which leads to conflicts because of the inconsistency of human drivers. In this paper, the performance of autonomous vehicles with ACC/CACC and traditional vehicles in mixed driver environments, at a signalized intersection, were evaluated using the micro-simulator VISSIM. In the simulation, the vehicles controlled by the ACC/CACC and Wiedemann 99 (W99) model represent the behavior of autonomous vehicles and human driver vehicles, respectively. For these two different driver environments, four different transport modes were comprehensively investigated: full light duty cars, full trucks, full motorcycles, and mixed conditions. In addition, ten different seed numbers were applied to each model to avoid coincidence. To evaluate the driving behavior of the human drivers and autonomous vehicles, this paper will compare the total number of stops, average velocity, and vehicle delay of each model at the signalized traffic intersection based on a real road intersection in Minnesota.more » « less
-
In this paper, we showcase a framework for cooperative mixed traffic platooning that allows the platooning vehicles to realize multiple benefits from using vehicle-to- everything (V2X) communications and advanced controls on urban arterial roads. A mixed traffic platoon, in general, can be formulated by a lead and ego connected automated vehicles (CAVs) with one or more unconnected human-driven vehicles (UHVs) in between. As this platoon approaches an intersection, the lead vehicle uses signal phase and timing (SPaT) messages from the connected intersection to optimize its trajectory for travel time and energy efficiency as it passes through the intersection. These benefits carry over to the UHVs and the ego vehicle as they follow the lead vehicle. The ego vehicle then uses information from the lead vehicle received through basic safety messages (BSMs) to further optimize its safety, driving comfort, and energy consumption. This is accomplished by the recently designed cooperative adaptive cruise control with unconnected vehicles (CACCu). The performance benefits of our framework are proven and demonstrated by simulations using real-world platooning data from the CACC Field Operation Test (FOT) Dataset from the Netherlands.more » « less
-
Adaptive Cruise Control (ACC) has become increasingly popular in modern vehicles, providing enhanced driving safety, comfort, and fuel efficiency. However, predefined ACC settings may not always align with a driver's preferences, leading to discomfort and possible safety hazards. To address this issue, Personalized ACC (P-ACC) has been studied by scholars. However, existing research mostly relies on historical driving data to imitate driver styles, which ignores real-time feedback from the driver. To overcome this limitation, we propose a cloud-vehicle collaborative P-ACC framework, which integrates real-time driver feedback adaptation. This framework consists of offline and online modules. The offline module records the driver's naturalistic car-following trajectory and uses inverse reinforcement learning (IRL) to train the model on the cloud. The online module utilizes the driver's real-time feedback to update the driving gap preference in real-time using Gaussian process regression (GPR). By retraining the model on the cloud with the driver's takeover trajectories, our approach achieves incremental learning to better match the driver's preference. In human-in-the-loop (HuiL) simulation experiments, the proposed framework results in a significant reduction of driver intervention in automatic control systems, up to 70.9%.more » « less