Abstract Lawsonite is a major host mineral of trace elements (TEs; e.g. REE, Sr, Pb, U, Th) and H2O in various rock types (metabasite, metasediment, metasomatite) over a wide range of depths in subduction zones. Consequently, the composition of lawsonite is a useful archive to track chemical exchanges that occurred during subduction and/or exhumation, as recorded in high-pressure/low-temperature (HP/LT) terranes. This study provides an extensive dataset of major element and TE compositions of lawsonite in HP/LT rocks from two mélanges (Franciscan/USA; Rio San Juan/Dominican Republic), two structurally coherent terranes (Tavşanlı/Turkey; Alpine Corsica/France), and the eclogite blocks of the Pinchi Lake/Canada complex. Bulk major and TE compositions were also determined for lawsonite-bearing host rocks to understand petrogenesis and assess compositional evolution. Most analyzed mélange and coherent-terrane metabasalts have normal mid-ocean ridge/back-arc basin basalt signatures and they preserve compositional evidence supporting interactions with (meta)sediment ± metagabbro/serpentinite (e.g. LILE/LREE enrichments; Ni/Cr enrichments). Most lawsonite grains analyzed are compositionally zoned in transition-metal elements (Fe, Ti, Cr), other TEs (e.g. Sr, Pb), and/or REE, with some grains showing compositional variations that correlate with zoning patterns (e.g. Ti-sector zoning, core-to-rim zoning in Fe, Cr-oscillatory zoning). Our results suggest that compositional variations in lawsonite formed in response to crystallographic control (in Ti-sector zoning), fluid–host rock interactions, modal changes in minerals, and/or element fractionation with coexisting minerals that compete for TEs (e.g. epidote, titanite). The Cr/V and Sr/Pb ratios of lawsonite are useful to track the compositional influence of serpentinite/metagabbro (high Cr/V) and quartz-rich (meta)sediment (low Sr/Pb). Therefore, lawsonite trace and rare earth element compositions effectively record element redistribution driven by metamorphic reactions and fluid–rock interactions that occurred in subduction systems.
more »
« less
How the Earth Recycles
Recycling is not just for plastic. Did you know that the Earth recycles? Recycling happens because the outer part of the planet is made up of large moving pieces of rock. Some of these pieces, called tectonic plates, sink deep down into the Earth. The deeper they go, the more heat and pressure they experience. This causes chemical reactions, including melting of the minerals that make up the rocks. Elements and water trapped inside the melting minerals are released and erupt from volcanoes, returning to the surface. The Earth has recycled! In this article, we present new research on a mineral called lawsonite. Lawsonite only forms in plates that dive into the Earth. Lawsonite has returned to the Earth’s surface in a few rare places where we can collect and analyze it. The composition of elements inside the lawsonite mineral help us understand the deep part of the Earth recycling system.
more »
« less
- Award ID(s):
- 1949895
- PAR ID:
- 10313460
- Date Published:
- Journal Name:
- Frontiers for Young Minds
- Volume:
- 9
- ISSN:
- 2296-6846
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Amphiboles are hydrous minerals that are formed in the oceanic crust via hydrothermal alteration. The partial substitution of halogens for OH−makes amphibole one of the principal hosts of Cl and F in the subducting slab. In this study, we investigated the electrical conductivity of a suite of halogen bearing amphibole minerals at 1.5 GPa up to 1,400 K. The discontinuous electrical behavior indicates dehydration of amphibole at ∼915 K. This is followed by dehydration induced hydrous melting at temperatures above 1,070 K. We find that the released aqueous fluids have an electrical conductivity of ∼0.1 S/m. This high electrical conductivity is likely to explain anomalously high electrical conductivity observed in certain subduction zone settings. This high electrical conductivity of an order of magnitude greater than the electrical conductivity of pure aqueous fluids at similar conditions is likely due to the partitioning of the F and Cl into the aqueous fluids. We also noted that subsequent to the dehydration, secondary phases form due to the breakdown of the primary halogen bearing amphibole. Chemical analyses of these secondary phases indicate that they are repositories of F and Cl. Hence, we infer that upon dehydration of the primary halogen bearing amphibole, first the F and Cl are partitioned into the aqueous fluids and then the halogens are partitioned back to the secondary mineral phases. These secondary minerals are likely to transport the halogen to the deep Earth and may in part explain the halogen concentration observed in ocean island basalt.more » « less
-
Abstract This article is dedicated to the occurrence, relevance, and structure of minerals whose formation involves high pressure. This includes minerals that occur in the interior of the Earth as well as minerals that are found in shock-metamorphized meteorites and terrestrial impactites. I discuss the chemical and physical reasons that render the definition of high-pressure minerals meaningful, in distinction from minerals that occur under surface-near conditions on Earth or at high temperatures in space or on Earth. Pressure-induced structural transformations in rock-forming minerals define the basic divisions of Earth's mantle in the upper mantle, transition zone, and lower mantle. Moreover, the solubility of minor chemical components in these minerals and the occurrence of accessory phases are influential in mixing and segregating chemical elements in Earth as an evolving planet. Brief descriptions of the currently known high-pressure minerals are presented. Over the past 10 years more high-pressure minerals have been discovered than during the previous 50 years, based on the list of minerals accepted by the IMA. The previously unexpected richness in distinct high-pressure mineral species allows for assessment of differentiation processes in the deep Earth.more » « less
-
Subduction of oceanic plates releases large amounts of chlorine and fluorine into the mantle. These halogens are transported into the crust through hydrous melting, where they may be incorporated into minerals such as biotite, apatite, and amphibole. Halogen concentrations are measured in volcanic or plutonic material, while the concentration of Cl and F released from the subducting slab must be calculated based upon the amount of crystallized material and the partition coefficients of each mineral. As amphibole is the most common halogen bearing igneous mineral, it is commonly studied as a bearer of Cl and F. However, the partition coefficient of F between amphibole and a hydrous melt has not been agreed upon by previous studies. Here we show that F is moderately to highly compatible in amphibole, in agreement with other experiments performed at crustal conditions. As amphibole may be able to incorporate a large amount of F, cryptic amphibole crystallization may raise the Cl/F ratio of residual magma, which will then be transported to the surface bearing this geochemical signature, even with little crystallized amphibole present in erupted material. This provides further evidence for the occurrence of cryptic amphibole crystallization, previously predicted based on REE studies and phase equilibria. A better understanding of the halogen reservoirs present in the crust will allow for more accurate estimates of the amount of Cl and F released by subducting slabs.more » « less
-
Sublithospheric diamonds and the inclusions they may carry crystallize in the asthenosphere, transition zone, or uppermost lower mantle (from 300 to ∼800 km), and are the deepest minerals so far recognized to form by plate tectonics. These diamonds are distinctive in their deformation features, low nitrogen content, and inclusions of these major mantle minerals: majoritic garnet, clinopyroxene, ringwoodite, CaSi perovskite, ferropericlase, and bridgmanite or their retrograde equivalents. The stable isotopic compositions of elements within these diamonds (δ11B, δ13C, δ15N) and their inclusions (δ18O, δ56Fe) are typically well outside normal mantle ranges, showing that these elements were either organic (C) or modified by seawater alteration (B, O, Fe) at relatively low temperatures. Metamorphic minerals in cold slabs are effective hosts that transport C as CO3 and H as H2O, OH, or CH4 below the island arc and mantle wedge. Warming of the slab generates carbonatitic melts, supercritical aqueous fluids, or metallic liquids, forming three types of sublithospheric diamonds. Diamond crystallization occurs by movement and reduction of mobile fluids as they pass through host mantle via fractures—a process that creates chemical heterogeneity and may promote deep focus earthquakes. Geobarometry of majoritic garnet inclusions and diamond ages suggest upward transport, perhaps to the base of mantle lithosphere. From there, diamonds are carried to Earth's surface by eruptions of kimberlite magma. Mineral assemblages in sublithospheric diamonds directly trace Earth's deep volatile cycle, demonstrating how the hydrosphere of a rocky planet can connect to its solid interior.▪Sublithospheric diamonds from the deep upper mantle, transition zone, and lower mantle host Earth's deepest obtainable mineral samples.▪Low-temperature seawater alteration of the ocean floor captures organic and inorganic carbon at the surface eventually to become some of the most precious gem diamonds.▪Subduction transports fluids in metamorphic minerals to great depth. Fluids released by slab heating migrate, react with host mantle to induce diamond crystallization, and may trigger earthquakes.▪Sublithospheric diamonds are powerful tracers of subduction—a plate tectonic process that deeply recycles part of Earth's planetary volatile budget.more » « less
An official website of the United States government

