skip to main content


Title: High-pressure minerals
Abstract This article is dedicated to the occurrence, relevance, and structure of minerals whose formation involves high pressure. This includes minerals that occur in the interior of the Earth as well as minerals that are found in shock-metamorphized meteorites and terrestrial impactites. I discuss the chemical and physical reasons that render the definition of high-pressure minerals meaningful, in distinction from minerals that occur under surface-near conditions on Earth or at high temperatures in space or on Earth. Pressure-induced structural transformations in rock-forming minerals define the basic divisions of Earth's mantle in the upper mantle, transition zone, and lower mantle. Moreover, the solubility of minor chemical components in these minerals and the occurrence of accessory phases are influential in mixing and segregating chemical elements in Earth as an evolving planet. Brief descriptions of the currently known high-pressure minerals are presented. Over the past 10 years more high-pressure minerals have been discovered than during the previous 50 years, based on the list of minerals accepted by the IMA. The previously unexpected richness in distinct high-pressure mineral species allows for assessment of differentiation processes in the deep Earth.  more » « less
Award ID(s):
1838330
PAR ID:
10168092
Author(s) / Creator(s):
Date Published:
Journal Name:
American Mineralogist
Volume:
104
Issue:
12
ISSN:
0003-004X
Page Range / eLocation ID:
1701 to 1731
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Transport of heat from the interior of the Earth drives convection in the mantle, which involves the deformation of solid rocks over billions of years. The lower mantle of the Earth is mostly composed of iron-bearing bridgmanite MgSiO 3 and approximately 25% volume periclase MgO (also with some iron). It is commonly accepted that ferropericlase is weaker than bridgmanite 1 . Considerable progress has been made in recent years to study assemblages representative of the lower mantle under the relevant pressure and temperature conditions 2,3 . However, the natural strain rates are 8 to 10 orders of magnitude lower than in the laboratory, and are still inaccessible to us. Once the deformation mechanisms of rocks and their constituent minerals have been identified, it is possible to overcome this limitation thanks to multiscale numerical modelling, and to determine rheological properties for inaccessible strain rates. In this work we use 2.5-dimensional dislocation dynamics to model the low-stress creep of MgO periclase at lower mantle pressures and temperatures. We show that periclase deforms very slowly under these conditions, in particular, much more slowly than bridgmanite deforming by pure climb creep. This is due to slow diffusion of oxygen in periclase under pressure. In the assemblage, this secondary phase hardly participates in the deformation, so that the rheology of the lower mantle is very well described by that of bridgmanite. Our results show that drastic changes in deformation mechanisms can occur as a function of the strain rate. 
    more » « less
  2. Abstract A viscosity jump of one to two orders of magnitude in the lower mantle of Earth at 800–1,200-km depth is inferred from geoid inversions and slab-subducting speeds. This jump is known as the mid-mantle viscosity jump 1,2 . The mid-mantle viscosity jump is a key component of lower-mantle dynamics and evolution because it decelerates slab subduction 3 , accelerates plume ascent 4 and inhibits chemical mixing 5 . However, because phase transitions of the main lower-mantle minerals do not occur at this depth, the origin of the viscosity jump remains unknown. Here we show that bridgmanite-enriched rocks in the deep lower mantle have a grain size that is more than one order of magnitude larger and a viscosity that is at least one order of magnitude higher than those of the overlying pyrolitic rocks. This contrast is sufficient to explain the mid-mantle viscosity jump 1,2 . The rapid growth in bridgmanite-enriched rocks at the early stage of the history of Earth and the resulting high viscosity account for their preservation against mantle convection 5–7 . The high Mg:Si ratio of the upper mantle relative to chondrites 8 , the anomalous 142 Nd: 144 Nd, 182 W: 184 W and 3 He: 4 He isotopic ratios in hot-spot magmas 9,10 , the plume deflection 4 and slab stagnation in the mid-mantle 3 as well as the sparse observations of seismic anisotropy 11,12 can be explained by the long-term preservation of bridgmanite-enriched rocks in the deep lower mantle as promoted by their fast grain growth. 
    more » « less
  3. In some ways, olivine has driven the evolution of the Solar System and likely beyond. As one of the earliest-crystallizing silicate minerals, olivine controls the initial chemical evolution of planet-wide magma oceans and individual lava flows alike. In solid aggregate form, it controls and records deformation of the mantle and smaller-scale intrusive complexes. The components of its crystal structure are mobile at high temperatures and their migration can be used to explore the timing of magmatic events. During chemical weathering, these olivine crystals capture carbon dioxide from the atmosphere as secondary minerals are formed. All of these processes take place not only on Earth, but also on other planetary bodies, making olivine ideally suited to shed light on both primordial planet-building processes and current-day volcanism and surface processes.

     
    more » « less
  4. Abstract

    Metasomatized mantle xenoliths containing hydrous minerals, such as amphiboles, serpentine, and phlogopite, likely represent the potential mineralogical compositions of the metasomatized upper mantle, where low seismic velocities are commonly observed. This study presents the first experimentally determined single‐crystal elasticity model of an Fe‐free near Ca, Mg‐endmember amphibole tremolite at high pressure and/or temperature conditions (maximum pressure 7.3(1) GPa, maximum temperature 700 K) using Brillouin spectroscopy. We found that sound velocities of amphiboles strongly depend on the Fe content. We then calculated the sound velocities of 441 hydrous‐mineral‐bearing mantle xenoliths collected around the globe, and quantitatively evaluated the roles that amphiboles, phlogopite and serpentine played in producing the low velocity anomalies in the metasomatized upper mantle.

     
    more » « less
  5. unknown (Ed.)
    The Earth’s core–mantle boundary presents a dramatic change in materials, from silicate to metal. While little is known about chemical interactions between them, a thin layer with a lower velocity has been proposed at the topmost outer core (Eʹ layer) that is difficult to explain with a change in concentration of a single light element. Here we perform high-temperature and -pressure laser-heated diamond-anvil cell experiments and report the formation of SiO2 and FeHx from a reaction between water from hydrous minerals and Fe–Si alloys at the pressure–temperature conditions relevant to the Earth’s core–mantle boundary. We suggest that, if water has been delivered to the core–mantle boundary by subduction, this reaction could enable exchange of hydrogen and silicon between the mantle and the core. The resulting H-rich, Si-deficient layer formed at the topmost core would have a lower density, stabilizing chemical stratification at the top of the core, and a lower velocity. We suggest that such chemical exchange between the core and mantle over gigayears of deep transport of water may have contributed to the formation of the putative Eʹ layer. 
    more » « less