skip to main content


Title: High-pressure minerals
Abstract This article is dedicated to the occurrence, relevance, and structure of minerals whose formation involves high pressure. This includes minerals that occur in the interior of the Earth as well as minerals that are found in shock-metamorphized meteorites and terrestrial impactites. I discuss the chemical and physical reasons that render the definition of high-pressure minerals meaningful, in distinction from minerals that occur under surface-near conditions on Earth or at high temperatures in space or on Earth. Pressure-induced structural transformations in rock-forming minerals define the basic divisions of Earth's mantle in the upper mantle, transition zone, and lower mantle. Moreover, the solubility of minor chemical components in these minerals and the occurrence of accessory phases are influential in mixing and segregating chemical elements in Earth as an evolving planet. Brief descriptions of the currently known high-pressure minerals are presented. Over the past 10 years more high-pressure minerals have been discovered than during the previous 50 years, based on the list of minerals accepted by the IMA. The previously unexpected richness in distinct high-pressure mineral species allows for assessment of differentiation processes in the deep Earth.  more » « less
Award ID(s):
1838330
NSF-PAR ID:
10168092
Author(s) / Creator(s):
Date Published:
Journal Name:
American Mineralogist
Volume:
104
Issue:
12
ISSN:
0003-004X
Page Range / eLocation ID:
1701 to 1731
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Transport of heat from the interior of the Earth drives convection in the mantle, which involves the deformation of solid rocks over billions of years. The lower mantle of the Earth is mostly composed of iron-bearing bridgmanite MgSiO 3 and approximately 25% volume periclase MgO (also with some iron). It is commonly accepted that ferropericlase is weaker than bridgmanite 1 . Considerable progress has been made in recent years to study assemblages representative of the lower mantle under the relevant pressure and temperature conditions 2,3 . However, the natural strain rates are 8 to 10 orders of magnitude lower than in the laboratory, and are still inaccessible to us. Once the deformation mechanisms of rocks and their constituent minerals have been identified, it is possible to overcome this limitation thanks to multiscale numerical modelling, and to determine rheological properties for inaccessible strain rates. In this work we use 2.5-dimensional dislocation dynamics to model the low-stress creep of MgO periclase at lower mantle pressures and temperatures. We show that periclase deforms very slowly under these conditions, in particular, much more slowly than bridgmanite deforming by pure climb creep. This is due to slow diffusion of oxygen in periclase under pressure. In the assemblage, this secondary phase hardly participates in the deformation, so that the rheology of the lower mantle is very well described by that of bridgmanite. Our results show that drastic changes in deformation mechanisms can occur as a function of the strain rate. 
    more » « less
  2. Abstract A viscosity jump of one to two orders of magnitude in the lower mantle of Earth at 800–1,200-km depth is inferred from geoid inversions and slab-subducting speeds. This jump is known as the mid-mantle viscosity jump 1,2 . The mid-mantle viscosity jump is a key component of lower-mantle dynamics and evolution because it decelerates slab subduction 3 , accelerates plume ascent 4 and inhibits chemical mixing 5 . However, because phase transitions of the main lower-mantle minerals do not occur at this depth, the origin of the viscosity jump remains unknown. Here we show that bridgmanite-enriched rocks in the deep lower mantle have a grain size that is more than one order of magnitude larger and a viscosity that is at least one order of magnitude higher than those of the overlying pyrolitic rocks. This contrast is sufficient to explain the mid-mantle viscosity jump 1,2 . The rapid growth in bridgmanite-enriched rocks at the early stage of the history of Earth and the resulting high viscosity account for their preservation against mantle convection 5–7 . The high Mg:Si ratio of the upper mantle relative to chondrites 8 , the anomalous 142 Nd: 144 Nd, 182 W: 184 W and 3 He: 4 He isotopic ratios in hot-spot magmas 9,10 , the plume deflection 4 and slab stagnation in the mid-mantle 3 as well as the sparse observations of seismic anisotropy 11,12 can be explained by the long-term preservation of bridgmanite-enriched rocks in the deep lower mantle as promoted by their fast grain growth. 
    more » « less
  3. null (Ed.)
    Abstract Constraining the accommodation, distribution, and circulation of hydrogen in the Earth's interior is vital to our broader understanding of the deep Earth due to the significant influence of hydrogen on the material and rheological properties of minerals. Recently, a great deal of attention has been paid to the high-pressure polymorphs of FeOOH (space groups P21nm and Pnnm). These structures potentially form a hydrogen-bearing solid solution with AlOOH and phase H (MgSiO4H2) that may transport water (OH–) deep into the Earth's lower mantle. Additionally, the pyrite-type polymorph (space group Pa3 of FeOOH), and its potential dehydration have been linked to phenomena as diverse as the introduction of hydrogen into the outer core (Nishi et al. 2017), the formation of ultralow-velocity zones (ULVZs) (Liu et al. 2017), and the Great Oxidation Event (Hu et al. 2016). In this study, the high-pressure evolution of FeOOH was re-evaluated up to ~75 GPa using a combination of synchrotron-based X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and optical absorption spectroscopy. Based on these measurements, we report three principal findings: (1) pressure-induced changes in hydrogen bonding (proton disordering or hydrogen bond symmetrization) occur at substantially lower pressures in ε-FeOOH than previously reported and are unlikely to be linked to the high-spin to low-spin transition; (2) ε-FeOOH undergoes a 10% volume collapse coincident with an isostructural Pnnm → Pnnm transition at approximately 45 GPa; and (3) a pressure-induced band gap reduction is observed in FeOOH at pressures consistent with the previously reported spin transition (40 to 50 GPa). 
    more » « less
  4. Abstract

    Nitrogen, the most abundant element in Earth's atmosphere, is also a primary component of solid nitride minerals found in meteorites and on Earth's surface. If they remain stable to high pressures and temperatures, these nitrides may also be important reservoirs of nitrogen in planetary interiors. We used synchrotron X‐ray diffraction to measure the thermal equation of state and phase stability of titanium nitride (TiN) in a laser‐heated diamond anvil cell at pressures up to ∼70 GPa and temperatures up to ∼2,500 K. TiN maintains the cubic B1 (NaCl‐type) crystal structure over the entire pressure and temperature range explored. It hasK0 = 274 (4) GPa,K0′ = 3.9 (2), andγ0 = 1.39 (4) for a fixedV0 = 76.516 (30) Å3(based on experimental measurements),q = 1, andθ0 = 579 K. Additionally, we collected Raman spectra of TiN up to ∼60 GPa, where we find that the transverse acoustic (TA), longitudinal acoustic (LA), and transverse optical phonon modes exhibit mode Grüneisen parameters of 1.66(17), 0.54(15), and 0.93 (4), respectively. Based on our equation of state, TiN has a density of ∼5.6–6.4 g/cm3at Earth's lower mantle conditions, significantly more dense than both the mantle of the Earth and the estimated densities of the mantles of other terrestrial planets, but less dense than planetary cores. We find that TiN remains stable against physical decomposition at the pressures and temperatures found within Earth's mantle, making it a plausible reservoir for deep planetary nitrogen if chemical conditions allow its formation.

     
    more » « less
  5. The sulfur isotope composition of volcanic rocks in arcs can be difficult to constrain because significant fractionation can occur during degassing. Mafic and ultramafic cumulates represent the least degassed part of the magmatic arc system, thereby offering an opportunity to investigate undegassed sulfur in arcs. Recent work on high pressure metamorphic rocks has suggested that subducted materials can retain their original isotopic composition to sub-arc depths. In particular, extreme negative δ34S values can be retained in subducted sediments. The purpose of this project is to investigate to what extent these deep subduction zone processes are reflected in the sulfur isotope signature of arc magmas. In the Lesser Antilles arc, there is a gradual decrease in terrigenous sediment being subducted from south to north. An estimated ~15% subducted sediment in the south and ~2% in the north is reflected in the chemical and isotopic composition of the Lesser Antilles arc magmas. Sulfides in these magma- derived cumulates record the earliest stages of magma evolution and are a more faithful monitor of the sulfur isotopic composition of the magma source region in the mantle than erupting lavas. We hypothesize that the decrease in terrigenous sediment being subducted from the south to north will be reflected in the S isotopes in cumulate samples. Samples of mafic and ultramafic cumulates have been collected from fourteen islands across the Lesser Antilles arc. Primary rock types are olivine gabbro, amphibole gabbro, plagioclase gabbro, and olivine gabbronorite. Sulfide minerals include pyrite, chalcopyrite, and pyrrhotite, and typically occur as spherical blebs. Sulfides are found primarily as inclusions in clinopyroxene, amphibole, olivine, and plagioclase. Sulfides occur less frequently as inclusions in magnetite and within the matrix. Analyses of sulfur isotopes in cumulate sulfides are currently underway. The decrease in the amount sediment being subducted from south to north in the Lesser Antilles arc should result in δ34S values that increase from south to north (more sediment subducted = more negative δ34S values). 
    more » « less