skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: X-Ray Photoelectron Spectroscopy of CdZnTe and CdMnTe Materials for Nuclear Detectors
Cadmium zinc telluride (CdZnTe) and cadmium manganese telluride (CdMnTe) semiconductor nuclear detectors have the ability to operate at room temperature without cryogenic cooling. Thus, they can be fabricated into portable nuclear detection devices that can be used at seaports and border security, and at nuclear facilities to monitor radiation levels. In this paper, we present results from the use of X-ray photoelectron spectroscopy (XPS) to study the surface compositions of CdZnTe and CdMnTe wafers. Our results showed that Cd, Te and TeO2 are the dominant species on these materials. Zn was also present on CdZnTe wafer, and Mn is present on the CdMnTe wafer. CdZnTe samples that were etched with high-energy ion beam did not show the presence of TeO2 on their surfaces.  more » « less
Award ID(s):
1828729 1818732 1140059
PAR ID:
10313492
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    High-resistivity zinc cadmium telluride (CdZnTe) semiconductor is a very popular material for room-temperature nuclear detection applications. It is used for the detection of X-rays and gamma rays in many areas: nuclear and radiological threat detection, medical imaging, gamma spectroscopy, and astrophysics. Mechanical stability at the interface of electrical contacts and the detector material is an important factor in terms of durability and shelf life of detector devices. Other engineering factors where that interface plays an important role include thermal expansion due to temperature changes and vibrations that may result from certain applications. The surface composition of the material play an important role in the surface stability of the material. The stoichiometric composition of the detector surfaces also affects its surface current, which, in turn, contributes to electronic noise. High electronic noise is detrimental to the energy resolution of the detector device. X-ray photoelectron spectroscopy (XPS) is a good technique for determining dominant surface composition of materials. In this current study, the authors used an XPS to look at the dominant composition materials on the surface of a CdZnTe wafer. The experiments involved loading CdZnTe wafers into the XPS machine and recording the peaks of the binding energies of elements and compounds present on the surfaces. The XPS results showed the presence of Zn, Te, O, Cd, C, Cl, Si, and TeO2. These results are important in the engineering of CdZnTe radiation detection devices. 
    more » « less
  2. Cadmium telluride (CdTe) and its ternary and quaternary compounds have found applications in the development of X-ray and gamma-ray detectors used in nuclear detection and medical imaging applications. Example of these detectors include CdZnTe (CZT), CdMnTe (CMT), and CdZnTeSe (CZTS). These nuclear detectors can operate at room temperature without cryogenic cooling. This paper presents comparative studies of these semiconductor material. The properties studied include detector resistivity, Te inclusions, grain boundary networks, mobility/lifetime of the charge carriers, and energy resolution. The effects of passivation with chemicals such as KOH and NH4F, are also presented. X-ray photoelectron spectroscopy (XPS) studies showed increase in the quantity of TeO2 on surfaces of these materials after passivation in KOH and NH4F. While CZT detector has wide commercial availability, it has more Te inclusions and grain boundary network compared to CZTS. CMT and CZTS have better crystal uniformity than CZT. The comparatively low presence of Te inclusions and grain boundary network in CZTS gives it a higher crystal growth yield for detector-grade material. 
    more » « less
  3. Cadmium zinc telluride selenide (CdZnTeSe) has shown great promise in reducing the cost of semiconductor nuclear detectors that can operate at room temperature without cryogenic cooling. This is due to the high yield of detector-grade materials in the CdZnTeSe crystal growth process, which can be attributed to the much smaller numbers of Te inclusions and grain boundary network in CdZnTeSe compared to other CdTe-based semiconductors such as CdZnTe. In the present work, we study the effects of surface passivation on CdZnTe detectors using a mixture of ammonium fluoride and hydrogen peroxide solution (NH4F + H2O2 + H2O). Detectors fabricated from CdZnTeSe crystals showed very good energy resolutions: 1.1% for the 662-keV gamma peak of Cs-137 by Frisch-grid detectors, and 5.9% for the 59.6-keV gamma peak of Am-241 by planar detectors. Experimental results show that the leakage current is increased immediately after passivation and then decreases as the surfaces stabilizes. The resistivity of the CdZnTeSe is of the order of 10**10 Ω-cm. The surface passivation improved the energy resolution of planar detector by 18% for the 59.6-keV gamma peak of Am-241. 
    more » « less
  4. Abstract The separation of tellurium from cadmium telluride is examined using a unique combination of mild, anhydrous chlorination and complexation of the subsequent tellurium tetrachloride with 3,5‐di‐tert‐butylcatecholate ligands (dtbc). The resulting tellurium complex, Te(dtbc)2, is isolated in moderate yield and features a 103to 104reduction in cadmium content, as provided by XRF and ICP‐MS analysis. Similar results were obtained from zinc telluride. A significant separation between Te, Se, and S was observed after treating a complex mixture of metal chalcogenides with this protocol. These three tunable steps can be applied for future applications of CdTe photovoltaic waste. 
    more » « less
  5. Cadmium telluride and silicon are among the widely used absorber materials in photovoltaic industry. A tandem solar cell of these two can absorb significant portion of solar spectrum to yield high efficiency due to the added voltage of the two solar cells. On basis of low-cost production, a CdTe/Si cell has the potential to produce low-cost and high efficiency tandem PV. The CdTe top cell in a substrate configuration is essential to achieve a tandem between CdTe and Si. A functional CdS/CdTe solar cell in the substrate configuration was fabricated on a Si wafer. Current -Voltage measurements show a diode-like curve with lower J-V parameters compared to standard CdS/CdTe cells. SCAPS simulations were performed to identify possible reasons for poor performance and help improve the device performance. 
    more » « less