skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Guided Healing of Damaged Microelectrodes via Electrokinetic Assembly of Conductive Carbon Nanotube Bridges
The subject of healing and repair of damaged microelectrodes has become of particular interest as the use of integrated circuits, energy storage technologies, and sensors within modern devices has increased. As the dimensions of the electrodes shrink together with miniaturization of all the elements in modern electronic devices, there is a greater risk of mechanical-, thermal-, or chemical-induced fracture of the electrodes. In this research, a novel method of electrode healing using electrokinetically assembled carbon nanotube (CNT) bridges is presented. Utilizing the previously described step-wise CNT deposition process, conductive bridges were assembled across ever-larger electrode gaps, with the width of electrode gaps ranging from 20 microns to well over 170 microns. This work represents a significant milestone since the longest electrically conductive CNT bridge previously reported had a length of 75 microns. To secure the created conductive CNT bridges, they are fixed with a layer of electrodeposited polypyrrole (a conductive polymer). The resistance of the resulting CNT bridges, and its dependence on the size of the electrode gap, is evaluated and explained. Connecting electrodes via conductive CNT bridges can find many applications from nanoelectronics to neuroscience and tissue engineering.  more » « less
Award ID(s):
1661877
PAR ID:
10313494
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Micromachines
Volume:
12
Issue:
4
ISSN:
2072-666X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Carbon Nanotube (CNT) agglomerates can be aligned along field lines between adjacent electrodes to form conductive bridges. This study discusses the step-wise process of dielectrophoretic deposition of CNTs to form conducting bridges between adjacent electrodes. For the first time, the creation of conductive CNT bridges spanning lengths over 50 microns is demonstrated. The CNT bridges are permanently secured using electrodeposition of the conducting polymer polypyrrole. Morphologies of the CNT bridges formed within a frequency range of 1 kHz and 10 MHz are explored and explained as a consequence of interplay between dielectrophoretic and electroosmotic forces. Postdeposition heat treatment increases the conductivity of CNT bridges, likely due to solvent evaporation and resulting surface tension inducing better contact between CNTs. 
    more » « less
  2. This study aims to develop a microelectrode array-based neural probe that can record dopamine activity with high stability and sensitivity. To mimic the high stability of the gold standard method (carbon fiber electrodes), the microfabricated platinum microelectrode is coated with carbon-based nanomaterials. Carboxyl-functionalized multi-walled carbon nanotubes (COOH-MWCNTs) and carbon quantum dots (CQDs) were selected for this purpose, while a conductive polymer like poly (3-4-ethylene dioxythiophene) (PEDOT) or polypyrrole (PPy) serves as a stable interface between the platinum of the electrode and the carbon-based nanomaterials through a co-electrodeposition process. Based on our comparison between different conducting polymers and the addition of CQD, the CNT–CQD–PPy modified microelectrode outperforms its counterparts: CNT–CQD–PEDOT, CNT–PPy, CNT–PEDOT, and bare Pt microelectrode. The CNT–CQD–PPy modified microelectrode has a higher conductivity, stability, and sensitivity while achieving a remarkable limit of detection (LOD) of 35.20 ± 0.77 nM. Using fast-scan cyclic voltammetry (FSCV), these modified electrodes successfully measured dopamine’s redox peaks while exhibiting consistent and reliable responses over extensive use. This electrode modification not only paves the way for real-time, precise dopamine sensing using microfabricated electrodes but also offers a novel electrochemical sensor for in vivo studies of neural network dynamics and neurological disorders. 
    more » « less
  3. null (Ed.)
    Dynamic covalent Diels–Alder chemistry was combined with multiwalled carbon nanotube (CNT) reinforcement to develop strong, tough and conductive dynamic materials. Unlike other approaches to functionalizing CNTs, this approach uses Diels–Alder bonds between diene pendant groups on the polymer and the CNT surface πσ bonds acting as dienophiles. Experimental and simulation data align with the CNT reinforcement coming from dynamic covalent bonds between the matrix and the CNT surface. The addition of just 0.9 wt% CNTs can lead to an almost 3-fold increase in strength and 6–7 order of magnitude increases in electrical conductivity, and materials with 0.45 wt% CNTs show excellent strength, self-healing and conductivity. 
    more » « less
  4. Self-healing soft electronic and robotic devices can, like human skin, recover autonomously from damage. While current devices use a single type of dynamic polymer for all functional layers to ensure strong interlayer adhesion, this approach requires manual layer alignment. In this study, we used two dynamic polymers, which have immiscible backbones but identical dynamic bonds, to maintain interlayer adhesion while enabling autonomous realignment during healing. These dynamic polymers exhibit a weakly interpenetrating and adhesive interface, whose width is tunable. When multilayered polymer films are misaligned after damage, these structures autonomously realign during healing to minimize interfacial free energy. We fabricated devices with conductive, dielectric, and magnetic particles that functionally heal after damage, enabling thin-film pressure sensors, magnetically assembled soft robots, and underwater circuit assembly. 
    more » « less
  5. Microparticulates placed in non-uniform electric field experience dielectrophoretic forces that can be utilized for the guided assembly of microparts. The presented study discusses two types of such guided micro-assemblies. We observe the self-assembly of carbon nanotubes (CNTs) into the conductive bridges between microelectrodes along the field lines. These conductive bridges are later fixed in place by the layer of electrodeposited conductive polymer Polypyrrole (PPy). Additionally, we report on using positive dielectrophoresis (pDEP) to attract polymer microbeads to the windows opened in the SU-8 photoresist on top of the microelectrodes. The electric field is getting shielded by the photoresist and thus the beads are attracted only to the bare electrodes opened in the photoresist via standard lithographic process. Presented techniques open new possibilities for the guided assembly of micro-components for sensors, actuators, microelectromechanical systems (MEMs), as well as for micro- and nano-electronic devices. 
    more » « less