skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multipath TCP in Smartphones Equipped with Millimeter Wave Radios
The well-known susceptibility of millimeter wave links to human blockage and client mobility has recently motivated researchers to propose approaches that leverage both 802.11ad radios (operating in the 60 GHz band) and legacy 802.11ac radios (operating in the 5 GHz band) in dual-band commercial off-the-shelf devices to simultaneously provide Gbps throughput and reliability. One such approach is via Multipath TCP (MPTCP), a transport layer protocol that is transparent to applications and requires no changes to the underlying wireless drivers. However, MPTCP (as well as other bundling approaches) have only been evaluated to date in 60 GHz WLANs with laptop clients. In this work, we port for first time the MPTCP source code to a dual-band smartphone equipped with an 802.11ad and an 802.11ac radio. We discuss the challenges we face and the system-level optimizations required to enable the phone to support Gbps data rates and yield optimal MPTCP throughput (i.e., the sum of the individual throughputs of the two radios) under ideal conditions. We also evaluate for first time the power consumption of MPTCP in a dual-band 802.11ad/ac smartphone and provide recommendations towards the design of an energy-aware MPTCP scheduler. We make our source code publicly available to enable other researchers to experiment with MPTCP in smartphones equipped with millimeter wave radios.  more » « less
Award ID(s):
2128476 1553447
PAR ID:
10313507
Author(s) / Creator(s):
; ; ; ;
Editor(s):
ACM
Date Published:
Journal Name:
The 15th ACM Workshop on Wireless Network Testbeds, Experimental evaluation & CHaracterization (WiNTECH’21)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    While millimeter-wave (mmWave) wireless has recently gained tremendous attention with the transition to 5G, developing a broadly accessible experimental infrastructure will allow the research community to make significant progress in this area. Hence, in this paper, we present the design and implementation of various programmable and open-access 28/60 GHz software-defined radios (SDRs), deployed in the PAWR COSMOS advanced wireless testbed. These programmable mmWave radios are based on the IBM 28 GHz 64-element dual-polarized phased array antenna module (PAAM) subsystem board and the Sivers IMA 60 GHz WiGig transceiver. These front ends are integrated with USRP SDRs or Xilinx RF-SoC boards, which provide baseband signal processing capabilities. Moreover, we present measurements of the TX/RX beamforming performance and example experiments (e.g., real-time channel sounding and RFNoC-based 802.11ad preamble detection), using the mmWave radios. Finally, we discuss ongoing enhancement and development efforts focusing on these radios. 
    more » « less
  2. While millimeter-wave (mmWave) wireless has recently gained tremendous attention with the transition to 5G, developing a broadly accessible experimental infrastructure will allow the research community to make significant progress in this area. Hence, in this paper, we present the design and implementation of various programmable and open-access 28/60 GHz software-defined radios (SDRs), deployed in the PAWR COSMOS advanced wireless testbed. These programmable mmWave radios are based on the IBM 28 GHz 64-element dual-polarized phased array antenna module (PAAM) subsystem board and the Sivers IMA 60 GHz WiGig transceiver. These front ends are integrated with USRP SDRs or Xilinx RFSoC boards, which provide baseband signal processing capabilities. Moreover, we present measurements of the TX/RX beamforming performance and example experiments (e.g., real-time channel sounding and RFNoC-based 802.11ad preamble detection), using the mmWave radios. Finally, we discuss ongoing enhancement and development efforts focusing on these radios. 
    more » « less
  3. null (Ed.)
    To address the needs of emerging bandwidth-intensive applications in 5G and beyond era, the millimeter-wave (mmWave) band with very large spectrum availability have been recognized as a promising choice for future wireless communications. In particular, IEEE 802.11ad/ay operating on 60 GHz carrier frequency is a highly anticipated wireless local area network (WLAN) technology for supporting ultra-high-rate data transmissions. In this paper, we describe additions to the ns-3 802.11ad simulator that include 3D obstacle specifications, line-of-sight calculations, and a sparse cluster-based channel model, which allow researchers to study complex mmWave Wi-Fi network deployments under more realistic conditions. We also study the performance accuracy and simulation efficiency of the implemented statistical channel model as compared to a deterministic ray-tracing based channel model. Through extensive ns-3 simulations, the results show that the implemented channel model has the potential to achieve good accuracy in performance evaluation while improving simulation efficiency. We also provide a detailed parametric analysis on the statistical channel model, which yields insight on how to properly tune the model parameters to further improve performance accuracy. 
    more » « less
  4. Baseband processing is one of the most time-consuming and computationally expensive tasks in radio access networks (RANs), which is typically realized in dedicated hardware. The concept of virtualizing the RAN functions by moving their computation to edge data centers can significantly reduce the deployment cost and enable more flexible use of the network resources. Recent studies have focused on software-based baseband processing for large-scale sub-6 GHz MIMO systems, while 5G also embraces the millimeter-wave (mmWave) frequency bands to achieve further improved data rates leveraging the widely available spectrum. Therefore, it is important to build a platform for the experimental investigation of software-based baseband processing for mmWave MIMO systems. In this paper, we implement programmable mmWave MIMO radios equipped with real-time baseband processing capability, leveraging the open-access PAWR COSMOS testbed. We first develop Agora-UHD, which enables UHD-based software-defined radios (SDRs) to interface with Agora, an open-source software realization of real-time massive MIMO baseband processing. Next, we integrate Agora-UHD with the USRP SDRs and IBM 28 GHz phased array antenna module (PAAM) subsystem boards deployed in the PAWR COSMOS testbed. We demonstrate a 2×2 28 GHz polarization MIMO link with a bandwidth of 122.88 MHz, and show that it can meet the real-time processing deadline of 0.375 ms (3 transmission time intervals for numerology 3 in 5G NR FR2) using only 8 CPU cores. The source code of Agora-UHD and its integration with the programmable 28 GHz radios in the COSMOS testbed with example tutorials are made publicly available. 
    more » « less
  5. There is much interest in integrating millimeter wave radios (mmWave) into wireless LANs and 5G cellular networks to benefit from their multi-GHz of available spectrum. Yet, unlike existing technologies, e.g., WiFi, mmWave radios require highly directional antennas. Since the antennas have pencil-beams, the transmitter and receiver need to align their beams before they can communicate. Existing systems scan the space to find the best alignment. Such a process has been shown to introduce up to seconds of delay and is unsuitable for wireless networks where an access point has to quickly switch between users and accommodate mobile clients. This paper presents Agile-Link, a new protocol that can find the best mmWave beam alignment without scanning the space. Given all possible directions for setting the antenna beam, Agile-Link provably finds the optimal direction in logarithmic number of measurements. Further, Agile-Link works within the existing 802.11ad standard for mmWave LAN, and can support both clients and access points. We have implemented Agile-Link in a mmWave radio and evaluated it empirically. Our results show that it reduces beam alignment delay by orders of magnitude. In particular, for highly directional mmWave devices operating under 802.11ad, the delay drops from over a second to 2.5 ms. 
    more » « less