skip to main content

Title: A high pitch angle structure in the Sagittarius Arm
Context. In spiral galaxies, star formation tends to trace features of the spiral pattern, including arms, spurs, feathers, and branches. However, in our own Milky Way, it has been challenging to connect individual star-forming regions to their larger Galactic environment owing to our perspective from within the disk. One feature in nearly all modern models of the Milky Way is the Sagittarius Arm, located inward of the Sun with a pitch angle of ∼12°. Aims. We map the 3D locations and velocities of star-forming regions in a segment of the Sagittarius Arm using young stellar objects (YSOs) from the Spitzer /IRAC Candidate YSO (SPICY) catalog to compare their distribution to models of the arm. Methods. Distances and velocities for these objects are derived from Gaia EDR3 astrometry and molecular line surveys. We infer parallaxes and proper motions for spatially clustered groups of YSOs and estimate their radial velocities from the velocities of spatially associated molecular clouds. Results. We identify 25 star-forming regions in the Galactic longitude range ℓ  ∼ 4.​ ° 0–18.​ ° 5 arranged in a narrow, ∼1 kpc long linear structure with a high pitch angle of ψ  = 56° and a high aspect ratio of ∼7:1. This structure includes massive star-forming regions such as M8, M16, M17, and M20. The motions in the structure are remarkably coherent, with velocities in the direction of Galactic rotation of | V φ |≈240 ± 3 km s −1 (slightly higher than average) and slight drifts inward ( V R  ≈ −4.3 km s −1 ) and in the negative Z direction ( V Z  ≈ −2.9 km s −1 ). The rotational shear experienced by the structure is ΔΩ = 4.6 km s −1 kpc −1 . Conclusions. The observed 56° pitch angle is remarkably high for a segment of the Sagittarius Arm. We discuss possible interpretations of this feature as a substructure within the lower pitch angle Sagittarius Arm, as a spur, or as an isolated structure.  more » « less
Award ID(s):
1908419 1739657
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We use medium-resolution Keck/Echellette Spectrograph and Imager spectroscopy of bright quasars to study cool gas traced by Caiiλλ3934, 3969 and Naiλλ5891, 5897 absorption in the interstellar/circumgalactic media of 21 foreground star-forming galaxies at redshifts 0.03 <z< 0.20 with stellar masses 7.4 ≤ logM*/M≤ 10.6. The quasar–galaxy pairs were drawn from a unique sample of Sloan Digital Sky Survey quasar spectra with intervening nebular emission, and thus have exceptionally close impact parameters (R< 13 kpc). The strength of this line emission implies that the galaxies’ star formation rates (SFRs) span a broad range, with several lying well above the star-forming sequence. We use Voigt profile modeling to derive column densities and component velocities for each absorber, finding that column densitiesN(Caii) > 1012.5cm−2(N(Nai) > 1012.0cm−2) occur with an incidencefC(Caii) = 0.63+0.10−0.11(fC(Nai) = 0.57+0.10−0.11). We find no evidence for a dependence offCor the rest-frame equivalent widthsWr(CaiiK) orWr(Nai5891) onRorM*. Instead,Wr(CaiiK) is correlated with local SFR at >3σsignificance, suggesting that Caiitraces star formation-driven outflows. While most of the absorbers have velocities within ±50 km s−1of the host redshift, their velocity widths (characterized by Δv90) are universally 30–177 km s−1larger than that implied by tilted-ring modeling of the velocities of interstellar material. These kinematics must trace galactic fountain flows and demonstrate that they persist atR> 5 kpc. Finally, we assess the relationship between dust reddening andWr(CaiiK) (Wr(Nai5891)), finding that 33% (24%) of the absorbers are inconsistent with the best-fit Milky WayE(B−V)-Wrrelations at >3σsignificance.

    more » « less
  2. null (Ed.)
    Luminous hot stars ( M K s  ≲ 0 mag and T eff  ≳ 8000 K) dominate the stellar energy input to the interstellar medium throughout cosmological time, are used as laboratories to test theories of stellar evolution and multiplicity, and serve as luminous tracers of star formation in the Milky Way and other galaxies. Massive stars occupy well-defined loci in colour–colour and colour–magnitude spaces, enabling selection based on the combination of Gaia EDR3 astrometry and photometry and 2MASS photometry, even in the presence of substantive dust extinction. In this paper we devise an all-sky sample of such luminous OBA-type stars, which was designed to be complete rather than very pure, providing targets for spectroscopic follow-up with the SDSS-V survey. To estimate the purity and completeness of our catalogue, we derive stellar parameters for the stars in common with LAMOST DR6 and we compare the sample to other O and B-type star catalogues. We estimate ‘astro-kinematic’ distances by combining parallaxes and proper motions with a model for the expected velocity and density distribution of young stars; we show that this adds useful constraints on the distances and therefore luminosities of the stars. With these distances we map the spatial distribution of a more stringently selected subsample across the Galactic disc, and find it to be highly structured, with distinct over- and under-densities. The most evident over-densities can be associated with the presumed spiral arms of the Milky Way, in particular the Sagittarius-Carina and Scutum-Centaurus arms. Yet, the spatial picture of the Milky Way’s young disc structure emerging in this study is complex, and suggests that most young stars in our Galaxy ( t age  <  t dyn ) are not neatly organised into distinct spiral arms. The combination of the comprehensive spectroscopy to come from SDSS-V (yielding velocities, ages, etc.) with future Gaia data releases will be crucial in order to reveal the dynamical nature of the spiral arms themselves. 
    more » « less

    Observations indicate that a continuous supply of gas is needed to maintain observed star formation rates in large, discy galaxies. To fuel star formation, gas must reach the inner regions of such galaxies. Despite its crucial importance for galaxy evolution, how and where gas joins galaxies is poorly constrained observationally and rarely explored in fully cosmological simulations. To investigate gas accretion in the vicinity of galaxies at low redshift, we analyse the FIRE-2 cosmological zoom-in simulations for 4 Milky Way mass galaxies (Mhalo ∼ 1012M⊙), focusing on simulations with cosmic ray physics. We find that at z ∼ 0, gas approaches the disc with angular momentum similar to the gaseous disc edge and low radial velocities, piling-up near the edge and settling into full rotational support. Accreting gas moves predominately parallel to the disc and joins largely in the outskirts. Immediately prior to joining the disc, trajectories briefly become more vertical on average. Within the disc, gas motion is complex, being dominated by spiral arm induced oscillations and feedback. However, time and azimuthal averages show slow net radial infall with transport speeds of 1–3 km s−1 and net mass fluxes through the disc of ∼M⊙ yr−1, comparable to the galaxies’ star formation rates and decreasing towards galactic centre as gas is sunk into star formation. These rates are slightly higher in simulations without cosmic rays (1–7 km s−1, ∼4–5 M⊙ yr−1). We find overall consistency of our results with observational constraints and discuss prospects of future observations of gas flows in and around galaxies.

    more » « less

    We present the spatially resolved measurements of a cool galactic outflow in the gravitationally lensed galaxy RCS0327 at z ≈ 1.703 using VLT/MUSE IFU observations. We probe the cool outflowing gas, traced by blueshifted Mg ii and Fe ii absorption lines, in 15 distinct regions of the same galaxy in its image-plane. Different physical regions, 5 – 7 kpc apart within the galaxy, drive the outflows at different velocities (Vout ∼ −161 to −240 km s−1), and mass outflow rates ($\dot{M}_{out} \sim 183$ – 527 ${\rm M}_{\odot }\, \mathrm{yr}^{-1}$). The outflow velocities from different regions of the same galaxy vary by 80 km s−1, which is comparable to the variation seen in a large sample of star-burst galaxies in the local universe. Using multiply lensed images of RCS0327, we probe the same star-forming region at different spatial scales (0.5–25 kpc2), we find that outflow velocities vary between ∼ −120 and −242 km s−1, and the mass outflow rates vary between ∼37 and 254 ${\rm M}_{\odot }\, \mathrm{yr}^{-1}$. The outflow momentum flux in this galaxy is ≥ 100% of the momentum flux provided by star formation in individual regions, and outflow energy flux is ≈ 10% of the total energy flux provided by star formation. These estimates suggest that the outflow in RCS0327 is energy driven. This work shows the importance of small scale variations of outflow properties due to the variations of local stellar properties of the host galaxy in the context of galaxy evolution.

    more » « less
  5. Abstract

    Signatures of vertical disequilibrium have been observed across the Milky Way’s (MW’s) disk. These signatures manifest locally as unmixed phase spirals inzvzspace (“snails-in-phase”), and globally as nonzero meanzandvz, wrapping around the disk into physical spirals in thexyplane (“snails-in-space”). We explore the connection between these local and global spirals through the example of a satellite perturbing a test-particle MW-like disk. We anticipate our results to broadly apply to any vertical perturbation. Using azvzasymmetry metric, we demonstrate that in test-particle simulations: (a) multiple local phase-spiral morphologies appear when stars are binned by azimuthal actionJϕ, excited by a single event (in our case, a satellite disk crossing); (b) these distinct phase spirals are traced back to distinct disk locations; and (c) they are excited at distinct times. Thus, local phase spirals offer a global view of the MW’s perturbation history from multiple perspectives. Using a toy model for a Sagittarius (Sgr)–like satellite crossing the disk, we show that the full interaction takes place on timescales comparable to orbital periods of disk stars withinR≲ 10 kpc. Hence such perturbations have widespread influence, which peaks in distinct regions of the disk at different times. This leads us to examine the ongoing MW–Sgr interaction. While Sgr has not yet crossed the disk (currently,zSgr≈ −6 kpc,vz,Sgr≈ 210 km s−1), we demonstrate that the peak of the impact has already passed. Sgr’s pull over the past 150 Myr creates a globalvzsignature with amplitude ∝MSgr, which might be detectable in future spectroscopic surveys.

    more » « less