skip to main content


Title: Anthropogenic aerosol effects on tropospheric circulation and sea surface temperature (1980–2020): separating the role of zonally asymmetric forcings
Abstract. Anthropogenic aerosols (AAs) induce global and regionaltropospheric circulation adjustments due to the radiative energyperturbations. The overall cooling effects of AA, which mask a portion ofglobal warming, have been the subject of many studies but still have largeuncertainty. The interhemispheric contrast in AA forcing has also beendemonstrated to induce a major shift in atmospheric circulation. However,the zonal redistribution of AA emissions since start of the 20th century, with anotable decline in the Western Hemisphere (North America and Europe) and acontinuous increase in the Eastern Hemisphere (South Asia and East Asia),has received less attention. Here we utilize four sets of single-model initial-condition large-ensemblesimulations with various combinations of external forcings to quantify theradiative and circulation responses due to the spatial redistribution of AAforcing during 1980–2020. In particular, we focus on the distinct climateresponses due to fossil-fuel-related (FF) aerosols emitted from the Western Hemisphere (WH) versus the Eastern Hemisphere (EH). The zonal (west to east) redistribution of FF aerosol emission since the1980s leads to a weakening negative radiative forcing over the WHmid-to-high latitudes and an enhancing negative radiative forcing over theEH at lower latitudes. Overall, the FF aerosol leads to a northward shift of the Hadley cell and an equatorward shift of the Northern Hemisphere (NH) jet stream. Here, two sets of regional FF simulations (Fix_EastFF1920and Fix_WestFF1920) are performed to separate the roles ofzonally asymmetric aerosol forcings. We find that the WH aerosol forcing,located in the extratropics, dominates the northward shift of the Hadley cell by inducing an interhemispheric imbalance in radiative forcing. On the other hand, the EH aerosol forcing, located closer to the tropics, dominates the equatorward shift of the NH jet stream. The consistent relationship between the jet stream shift and the top-of-atmosphere net solar flux (FSNTOA) gradient suggests that the latter serves as a rule-of-thumb guidance for the expected shift of the NH jet stream. The surface effect of EH aerosol forcing (mainly from low- to midlatitudes)is confined more locally and only induces weak warming over the northeastern Pacific and North Atlantic. In contrast, the WH aerosol reduction leads to a large-scale warming over NH mid-to-high latitudes that largely offsets the cooling over the northeastern Pacific due to EH aerosols. The simulated competing roles of regional aerosol forcings in drivingatmospheric circulation and surface temperature responses during the recentdecades highlight the importance of considering zonally asymmetric forcings(west to east) and also their meridional locations within the NH (tropicalvs. extratropical).  more » « less
Award ID(s):
1934363 1934392 2311170
NSF-PAR ID:
10313517
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
21
Issue:
24
ISSN:
1680-7324
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Atmospheric CO2 and anthropogenic aerosols (AA) have increased simultaneously. Because of their opposite radiative effects, these increases may offset each other, which may lead to some nonlinear effects. Here the seasonal and regional characteristics of this nonlinear effect from the CO2 and AA forcings are investigated using the fully coupled Community Earth System Model. Results show that nonlinear effects are small in the global mean of the top-of-the-atmosphere radiative fluxes, surface air temperature, and precipitation. However, significant nonlinear effects exist over the Arctic and other extratropical regions during certain seasons. When both forcings are included, Arctic sea ice in September–November decreases less than the linear combination of the responses to the individual forcings due to a higher sea ice sensitivity to the CO2-induced warming than the sensitivity to the AA-induced cooling. This leads to less Arctic warming in the combined-forcing experiment due to reduced energy release from the Arctic Ocean to the atmosphere. Some nonlinear effects on precipitation in June–August are found over East Asia, with the northward-shifted East Asian summer rain belt to oppose the CO2 effect. In December–February, the aerosol loading over Europe in the combined-forcing experiment is higher than that due to the AA forcing, resulting from CO2-induced circulation changes. The changed aerosol loading results in regional thermal responses due to aerosol direct and indirect effects, weakening the combined changes of temperature and circulation. This study highlights the need to consider nonlinear effects from historical CO2 and AA forcings in seasonal and regional climate attribution analyses.

     
    more » « less
  2. null (Ed.)
    Abstract Land-use and land-cover change (LULCC) is one of the most important forcings affecting climate in the past century. This study evaluates the global and regional LULCC impacts in 1950–2015 by employing an annually updated LULCC map in a coupled land–atmosphere–ocean model. The difference between LULCC and control experiments shows an overall land surface temperature (LST) increase by 0.48 K in the LULCC regions and a widespread LST decrease by 0.18 K outside the LULCC regions. A decomposed temperature metric (DTM) is applied to quantify the relative contribution of surface processes to temperature changes. Furthermore, while precipitation in the LULCC areas is reduced in agreement with declined evaporation, LULCC causes a southward displacement of the intertropical convergence zone (ITCZ) with a narrowing by 0.5°, leading to a tripole anomalous precipitation pattern over the warm pool. The DTM shows that the temperature response in LULCC regions results from the competing effect between increased albedo (cooling) and reduced evaporation (warming). The reduced evaporation indicates less atmospheric latent heat release in convective processes and thus a drier and cooler troposphere, resulting in a reduction in surface cooling outside the LULCC regions. The southward shift of the ITCZ implies a northward cross-equatorial energy transport anomaly in response to reduced latent/sensible heat of the atmosphere in the Northern Hemisphere, where LULCC is more intensive. Tropospheric cooling results in the equatorward shift of the upper-tropospheric westerly jet in both hemispheres, which, in turn, leads to an equatorward narrowing of the Hadley circulation and ITCZ. 
    more » « less
  3. Abstract

    The 1783–1784 CE Laki flood lava eruption began on 8 June 1783. Over the course of 8 months, the eruption released approximately 122 Tg of sulfur dioxide gas into the upper troposphere and lower stratosphere above Iceland. Previous studies that have examined the impact of the Laki eruption on sulfate aerosol and climate have either used an aerosol model coupled off‐line to a general circulation model (GCM) or used a GCM with incomplete aerosol microphysics. Here, we study the impact on stratospheric aerosol evolution and stratospheric and tropospheric circulation using a fully coupled GCM with complete aerosol microphysics, the Community Earth System Model version 1, with the Whole Atmosphere Chemistry Climate Model high‐top atmosphere component. Simulations indicate that the Laki aerosols had peak average effective radii of approximately 0.4 μm in Northern Hemisphere (NH) middle and high latitudes, with peak average effective radii of 0.25 μm in NH tropics and 0.2 μm in the Southern Hemisphere. We find that the Laki aerosols are transported globally and have significant impacts on the circulation in both hemispheres, strengthening the Southern Hemisphere polar vortex and shifting the tropospheric NH subtropical jet equatorward.

     
    more » « less
  4. Abstract

    Changes in midlatitude clouds as a result of shifts in general circulation patterns are widely thought to be a potential source of radiative feedbacks onto the climate system. Previous work has suggested that two general circulation shifts anticipated to occur in a warming climate, poleward shifts in the midlatitude jet streams and a poleward expansion of the Hadley circulation, are associated with differing effects on midlatitude clouds. This study examines two dynamical cloud‐controlling factors, mid‐tropospheric vertical velocity, and the estimated inversion strength (EIS) of the marine boundary layer temperature inversion, to explain why poleward shifts in the Southern Hemisphere midlatitude jet and Hadley cell edge have varying shortwave cloud‐radiative responses at midlatitudes. Changes in vertical velocity and EIS occur further equatorward for poleward shifts in the Hadley cell edge than they do for poleward shifts of the midlatitude jet. Because the sensitivity of shortwave cloud radiative effects (SWCRE) to variations in vertical velocity and EIS is a function of latitude, the SWCRE anomalies associated with jet and Hadley cell shifts differ. The dynamical changes associated with a poleward jet shift occur further poleward in a regime where the sensitivities of SWCRE to changes in vertical velocity and EIS balance, leading to a near‐net zero change in SWCRE in midlatitudes with a poleward jet shift. Conversely, the dynamical changes associated with Hadley cell expansion occur further equatorward at a latitude where the sensitivity of SWCRE is more strongly associated with changes in mid‐tropospheric vertical velocity, leading to a net shortwave cloud radiative warming effect in midlatitudes.

     
    more » « less
  5. Abstract

    Comprehensive climate models exhibit a large spread in the magnitude of projected poleward eddy‐driven jet shift in response to warming. The spread has been connected to the radiative response to warming. To understand how different radiative assumptions alone affect the jet shift in response to warming, we introduce a new clear‐sky longwave radiation hierarchy that spans idealized (gray versus four bands; without or with interactive water vapor) through comprehensive (correlated‐k) radiation in the same general circulation model. The new hierarchy is used in an aquaplanet configuration to explore the impact of radiation on the jet stream response to warming, independent of mean surface temperature and meridional surface temperature gradient responses. The gray radiation scheme produces a split jet and its eddy‐driven jet shifts equatorward as climate warms, whereas the storm track shifts equatorward then poleward. Including four longwave bands leads to a merged jet that shifts slightly poleward with warming, and the storm track shifts monotonically poleward. Including interactive water vapor makes the poleward jet shift comparable to the jet shift with comprehensive radiation and interactive water vapor. These jet and storm track differences are linked to the radiation response of the stratospheric temperature, the tropopause height, and the meridional gradient of the radiative forcing to warming. Dynamically, the equatorward jet shift with the gray scheme is consistent with reduced wave reflection on the poleward flank of the jet, whereas the poleward jet shift with the other schemes is consistent with increased eddy length scale that favors equatorward wave propagation.

     
    more » « less