Tropical climate response to greenhouse warming is to first order symmetric about the equator but climate models disagree on the degree of latitudinal asymmetry of the tropical change. Intermodel spread in equatorial asymmetry of tropical climate response is investigated by using 37 models from phase 6 of the Coupled Model Intercomparison Project (CMIP6). In the simple simulation with CO2increase at 1% per year but without aerosol forcing, this study finds that intermodel spread in tropical asymmetry is tied to that in the extratropical surface heat flux change related to the Atlantic meridional overturning circulation (AMOC) and Southern Ocean sea ice concentration (SIC). AMOC or Southern Ocean SIC change alters net energy flux at the top of the atmosphere and sea surface in one hemisphere and may induce interhemispheric atmospheric energy transport. The negative feedback of the shallow meridional overturning circulation in the tropics and the positive low cloud feedback in the subtropics are also identified. Our results suggest that reducing the intermodel spread in extratropical change can improve the reliability of tropical climate projections.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract This study investigates the formation mechanism of the ocean surface warming pattern in response to a doubling CO2with a focus on the role of ocean heat uptake (or ocean surface heat flux change, Δ
Q net). We demonstrate that thetransient patterns of surface warming and rainfall change simulated by the dynamic ocean–atmosphere coupled model (DOM) can be reproduced by theequilibrium solutions of the slab ocean–atmosphere coupled model (SOM) simulations when forced with the DOM ΔQ netdistribution. The SOM is then used as a diagnostic inverse modeling tool to decompose the CO2-induced thermodynamic warming effect and the ΔQ net(ocean heat uptake)–induced cooling effect. As ΔQ netis largely positive (i.e., downward into the ocean) in the subpolar oceans and weakly negative at the equator, its cooling effect is strongly polar amplified and opposes the CO2warming, reducing the net warming response especially over Antarctica. For the same reason, the ΔQ net-induced cooling effect contributes significantly to the equatorially enhanced warming in all three ocean basins, while the CO2warming effect plays a role in the equatorial warming of the eastern Pacific. The spatially varying component of ΔQ net, although globally averaged to zero, can effectively rectify and lead to decreased global mean surface temperature of a comparable magnitude as the global meanmore » -
Abstract Cross-equatorial ocean heat transport (OHT) changes have been found to damp meridional shifts of the intertropical convergence zone (ITCZ) induced by hemispheric asymmetries in radiative forcing. Zonal-mean energy transport theories and idealized model simulations have suggested that these OHT changes occur primarily due to wind-driven changes in the Indo-Pacific’s shallow subtropical cells (STCs) and buoyancy-driven changes in the deep Atlantic meridional overturning circulation (AMOC). In this study we explore the partitioning between buoyancy and momentum forcing in the ocean’s response. We adjust the top-of-atmosphere solar forcing to cool the Northern Hemisphere (NH) extratropics in a novel set of comprehensive climate model simulations designed to isolate buoyancy-forced and momentum-forced changes. In this case of NH high-latitude forcing, we confirm that buoyancy-driven changes in the AMOC dominate in the Atlantic. However, in contrast with prior expectations, buoyancy-driven changes in the STCs are the primary driver of the heat transport changes in the Indo-Pacific. We find that buoyancy-forced Indo-Pacific STC changes transport nearly 4 times the amount of heat across the equator as the shallower wind-driven STC changes. This buoyancy-forced STC response arises from extratropical density perturbations that are amplified by the low cloud feedback and communicated to the tropics by themore »Free, publicly-accessible full text available October 15, 2023
-
Excessive precipitation over the southeastern tropical Pacific is a major common bias that persists through generations of global climate models. While recent studies suggest an overly warm Southern Ocean as the cause, models disagree on the quantitative importance of this remote mechanism in light of ocean circulation feedback. Here, using a multimodel experiment in which the Southern Ocean is radiatively cooled, we show a teleconnection from the Southern Ocean to the tropical Pacific that is mediated by a shortwave subtropical cloud feedback. Cooling the Southern Ocean preferentially cools the southeastern tropical Pacific, thereby shifting the eastern tropical Pacific rainbelt northward with the reduced precipitation bias. Regional cloud locking experiments confirm that the teleconnection efficiency depends on subtropical stratocumulus cloud feedback. This subtropical cloud feedback is too weak in most climate models, suggesting that teleconnections from the Southern Ocean to the tropical Pacific are stronger than widely thought.Free, publicly-accessible full text available August 23, 2023
-
Abstract The Indian Ocean has an intriguing intertropical convergence zone (ITCZ) south of the equator year-round, which remains largely unexplored. Here we investigate this Indian Ocean ITCZ and the mechanisms for its origin. With a weak semiannual cycle, this ITCZ peaks in January–February with the strongest rainfall and southernmost location and a northeast–southwest orientation from the Maritime Continent to Madagascar, reaches a minimum around May with a zonal orientation, grows until its secondary maximum around September with a northwest–southeast orientation, weakens slightly until December, and then regains its mature phase in January. During austral summer, the Indian Ocean ITCZ exists over maximum surface moist static energy (MSE), consistent with convective quasi-equilibrium theory. This relationship breaks up during boreal summer when the surface MSE maximizes in the northern monsoon region. The position and orientation of the Indian Ocean ITCZ can be simulated well in both a linear dynamical model and the state-of-the-art Community Atmosphere Model version 6 (CAM6) when driven by observed sea surface temperature (SST). To quantify the contributions of the planetary boundary layer (PBL) and free-atmosphere processes to this ITCZ, we homogenize the free-atmosphere diabatic heating over the Indian Ocean in CAM6. In response, the ITCZ weakens significantly, owingmore »Free, publicly-accessible full text available August 15, 2023
-
Abstract. Anthropogenic aerosols (AAs) induce global and regionaltropospheric circulation adjustments due to the radiative energyperturbations. The overall cooling effects of AA, which mask a portion ofglobal warming, have been the subject of many studies but still have largeuncertainty. The interhemispheric contrast in AA forcing has also beendemonstrated to induce a major shift in atmospheric circulation. However,the zonal redistribution of AA emissions since start of the 20th century, with anotable decline in the Western Hemisphere (North America and Europe) and acontinuous increase in the Eastern Hemisphere (South Asia and East Asia),has received less attention. Here we utilize four sets of single-model initial-condition large-ensemblesimulations with various combinations of external forcings to quantify theradiative and circulation responses due to the spatial redistribution of AAforcing during 1980–2020. In particular, we focus on the distinct climateresponses due to fossil-fuel-related (FF) aerosols emitted from the Western Hemisphere (WH) versus the Eastern Hemisphere (EH). The zonal (west to east) redistribution of FF aerosol emission since the1980s leads to a weakening negative radiative forcing over the WHmid-to-high latitudes and an enhancing negative radiative forcing over theEH at lower latitudes. Overall, the FF aerosol leads to a northward shift of the Hadley cell and an equatorward shift of the Northernmore »
-
null (Ed.)Walker circulation variability and associated zonal shifts in the heating of the tropical atmosphere have far-reaching global impacts well into high latitudes. Yet the reversed high latitude–to–Walker circulation teleconnection is not fully understood. Here, we reveal the dynamical pathways of this teleconnection across different components of the climate system using a hierarchy of climate model simulations. In the fully coupled system with ocean circulation adjustments, the Walker circulation strengthens in response to extratropical radiative cooling of either hemisphere, associated with the upwelling of colder subsurface water in the eastern equatorial Pacific. By contrast, in the absence of ocean circulation adjustments, the Walker circulation response is sensitive to the forcing hemisphere, due to the blocking effect of the northward-displaced climatological intertropical convergence zone and shortwave cloud radiative effects. Our study implies that energy biases in the extratropics can cause pronounced changes of tropical climate patterns.