skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cognitive differences among first-year and senior engineering students when generating design solutions with and without additional dimensions of sustainability
Abstract The research presented in this paper explores how engineering students cognitively manage concept generation and measures the effects of additional dimensions of sustainability on design cognition. Twelve first-year and eight senior engineering students generated solutions to 10 design problems. Half of the problems included additional dimensions of sustainability. The number of unique design solutions students developed and their neurocognitive activation were measured. Without additional requirements for sustainability, first-year students generated significantly more solutions than senior engineering students. First-year students recruited higher cortical activation in the brain region generally associated with cognitive flexibility, and divergent and convergent thinking. Senior engineering students recruited higher activation in the brain region generally associated with uncertainty processing and self-reflection. When additional dimensions of sustainability were present, first-year students produced fewer solutions. Senior engineering students generated a similar number of solutions. Senior engineering students required less cortical activation to generate a similar number of solutions. The varying patterns of cortical activation and different number of solutions between first-year and senior engineering students begin to highlight cognitive differences in how students manage and retrieve information in their brain during design. Students’ ability to manage complex requirements like sustainability may improve with education.  more » « less
Award ID(s):
1929892
PAR ID:
10313528
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Design Science
Volume:
7
ISSN:
2053-4701
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Undergraduate engineering students are commonly introduced to design in their first year and tackle a more authentic design challenge during senior year, with intervening courses focused on technical problem solving. Along this trajectory, students should acquire skills related to the development of engineering requirements, which are important to the technical framing of design problems. Through the lens of framing agency, this mixed-methods study explores first-year and senior students’ knowledge of engineering requirements as they engaged problems within their respective courses. Findings suggest that learning about requirements as a framing mechanism was not well-supported across the curriculum. Implications include a need to engage students in requirements development during the middle years and improve support for iterative framing and solving activities 
    more » « less
  2. Ideation is a key phase in engineering design and brainstorming is an established method for ideation. A limitation of the brainstorming process is idea production tends to peak at the beginning and quickly decreases with time. In this exploratory study, we tested an innovative technique to sustain ideation by providing designers feedback about their neurocognition. We used a neuroimaging technique (fNIRS) to monitor students’ neurocognitive activations during a brainstorming task. Half received real-time feedback about their neurocognitive activation in their prefrontal cortex, a brain region associated with working memory and cognitive flexibility. Students who received the neurocognitive feedback maintained higher cortical activation and longer sustained peak activation. Students receiving the neurocognitive feedback demonstrated a higher percentage of right-hemispheric dominance, a region associated to creative processing, compared to the students without neurocognitive feedback. The increase in right-hemispheric dominance positively correlated with an increase in the number of solutions during concept generation and a higher design idea fluency. These results demonstrate the prospective use of neurocognitive feedback to sustain the cognitive activations necessary for idea generation during brainstorming. Future research should explore the effect of neurocognitive feedback with a more robust sample of designers and compare neurocognitive feedback with other types of interventions to sustain ideation. 
    more » « less
  3. The Theory of Inventive Problem Solving (TRIZ) method and toolkit provides a well-structured approach to support engineering design with pre-defined steps: interpret and define the problem, search for standard engineering parameters, search for inventive principles to adapt, and generate final solutions. The research presented in this paper explores the neuro-cognitive differences of each of these steps. We measured the neuro-cognitive activation in the prefrontal cortex (PFC) of 30 engineering students. Neuro-cognitive activation was recorded while students completed an engineering design task. The results show a varying activation pattern. When interpreting and defining the problem, higher activation is found in the left PFC, generally associated with goal directed planning and making analytical. Neuro-cognitive activation shifts to the right PFC during the search process, a region usually involved in exploring the problem space. During solution generation more activation occurs in the medial PFC, a region generally related to making associations. The findings offer new insights and evidence explaining the dynamic neuro-cognitive activations when using TRIZ in engineering design. 
    more » « less
  4. The Theory of Inventive Problem Solving (TRIZ) method and toolkit provides a well-structured approach to support engineering design with pre-defined steps: interpret and define the problem, search for standard engineering parameters, search for inventive principles to adapt, and generate final solutions. The research presented in this paper explores the neurocognitive differences of each of these steps. We measured the neuro-cognitive activation in the prefrontal cortex (PFC) of 30 engineering students. Neuro-cognitive activation was recorded while students completed an engineering design task. The results show a varying activation pattern. When interpreting and defining the problem, higher activation is found in the left PFC, generally associated with goal directed planning and making analytical judgement when interpreting and defining the problem. Neuro-cognitive activation shifts to the right PFC during the search process, a region usually involved in exploring the problem space. During solution generation more activation occurs in the medial PFC, a region generally related to making associations. The findings offer new insights and evidence explaining the dynamic neuro-cognitive activations when using TRIZ in engineering design. 
    more » « less
  5. Gero, John S. (Ed.)
    To explore the connection between brain and behavior in engineering design, this study measured the change in neurocognition of engineering students while they developed concept maps. Concept maps help designers organize complex ideas by illustrating components and relationships. Student concept maps were graded using a pre-established scoring method and compared to their neurocognitive activation. Results show significant correlations between performance and neurocognition. Concept map scores were positively correlated with activation in students’ prefrontal cortex. A prominent sub-region was the right dorsolateral prefrontal cortex (DLPFC), which is generally associated with divergent thinking and cognitive flexibility. Student scores were negatively correlated with measures of brain network density. The findings suggest a possible neurocognitive mechanism for better performance. More research is needed to connect brain activation to the cognitive activi-ies that occur when designing but these results provide new evidence for the brain functions that support the development of complex ideas during design. 
    more » « less