skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Locus-specific paramutation in Zea mays is maintained by a PICKLE-like chromodomain helicase DNA-binding 3 protein controlling development and male gametophyte function
Paramutations represent directed and meiotically-heritable changes in gene regulation leading to apparent violations of Mendelian inheritance. Although the mechanism and evolutionary importance of paramutation behaviors remain largely unknown, genetic screens in maize ( Zea mays ) identify five components affecting 24 nucleotide RNA biogenesis as required to maintain repression of a paramutant purple plant1 ( pl1 ) allele. Currently, the RNA polymerase IV largest subunit represents the only component also specifying proper development. Here we identify a chromodomain helicase DNA-binding 3 (CHD3) protein orthologous to Arabidopsis ( Arabidopsis thaliana ) PICKLE as another component maintaining both pl1 paramutation and normal somatic development but without affecting overall small RNA biogenesis. In addition, genetic tests show this protein contributes to proper male gametophyte function. The similar mutant phenotypes documented in Arabidopsis and maize implicate some evolutionarily-conserved gene regulation while developmental defects associated with the two paramutation mutants are largely distinct. Our results show that a CHD3 protein responsible for normal plant ontogeny and sperm transmission also helps maintain meiotically-heritable epigenetic regulatory variation for specific alleles. This finding implicates an intersection of RNA polymerase IV function and nucleosome positioning in the paramutation process.  more » « less
Award ID(s):
1715375
PAR ID:
10313540
Author(s) / Creator(s):
; ;
Editor(s):
Springer, Nathan M.
Date Published:
Journal Name:
PLOS Genetics
Volume:
16
Issue:
12
ISSN:
1553-7404
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Paramutation is the transfer of mitotically and meiotically heritable silencing information between two alleles. With paramutation at the maize (Zea mays) booster1 (b1) locus, the low-expressed B′ epiallele heritably changes the high-expressed B-I epiallele into B′ with 100% frequency. This requires specific tandem repeats and multiple components of the RNA-directed DNA methylation pathway, including the RNA-dependent RNA polymerase (encoded by mediator of paramutation1, mop1), the second-largest subunit of RNA polymerase IV and V (NRP(D/E)2a, encoded by mop2), and the largest subunit of RNA Polymerase IV (NRPD1, encoded by mop3). Mutations in mop genes prevent paramutation and release silencing at the B′ epiallele. In this study, we investigated the effect of mutations in mop1, mop2, and mop3 on chromatin structure and DNA methylation at the B′ epiallele, and especially the regulatory hepta-repeat 100 kb upstream of the b1 gene. Mutations in mop1 and mop3 resulted in decreased repressive histone modifications H3K9me2 and H3K27me2 at the hepta-repeat. Associated with this decrease were partial activation of the hepta-repeat enhancer function, formation of a multi-loop structure, and elevated b1 expression. In mop2 mutants, which do not show elevated b1 expression, H3K9me2, H3K27me2 and a single-loop structure like in wild-type B′ were retained. Surprisingly, high CG and CHG methylation levels at the B′ hepta-repeat remained in all three mutants, and CHH methylation was low in both wild type and mutants. Our results raise the possibility of MOP factors mediating RNA-directed histone methylation rather than RNA-directed DNA methylation at the b1 locus. 
    more » « less
  2. Across eukaryotes, gene regulation is manifested via chromatin states roughly distinguished as heterochromatin and euchromatin. The establishment, maintenance, and modulation of the chromatin states is mediated using several factors including chromatin modifiers. However, factors that avoid the intrusion of silencing signals into protein-coding genes are poorly understood. Here we show that a plant specific paralog of RNA polymerase (Pol) II, named Pol IV, is involved in avoidance of facultative heterochromatic marks in protein-coding genes, in addition to its well-established functions in silencing repeats and transposons. In its absence, H3K27 trimethylation (me3) mark intruded the protein-coding genes, more profoundly in genes embedded with repeats. In a subset of genes, spurious transcriptional activity resulted in small(s) RNA production, leading to post-transcriptional gene silencing. We show that such effects are significantly pronounced in rice, a plant with a larger genome with distributed heterochromatin compared withArabidopsis. Our results indicate the division of labor among plant-specific polymerases, not just in establishing effective silencing via sRNAs and DNA methylation but also in influencing chromatin boundaries. 
    more » « less
  3. Plants are subjected to extreme environmental conditions and must adapt rapidly. The phytohormone abscisic acid (ABA) accumulates during abiotic stress, signaling transcriptional changes that trigger physiological responses. Epigenetic modifications often facilitate transcription, particularly at genes exhibiting temporal, tissue-specific and environmentally-induced expression. In maize ( Zea mays ), MEDIATOR OF PARAMUTATION 1 (MOP1) is required for progression of an RNA-dependent epigenetic pathway that regulates transcriptional silencing of loci genomewide. MOP1 function has been previously correlated with genomic regions adjoining particular types of transposable elements and genic regions, suggesting that this regulatory pathway functions to maintain distinct transcriptional activities within genomic spaces, and that loss of MOP1 may modify the responsiveness of some loci to other regulatory pathways. As critical regulators of gene expression, MOP1 and ABA pathways each regulate specific genes. To determine whether loss of MOP1 impacts ABA-responsive gene expression in maize, mop1-1 and Mop1 homozygous seedlings were subjected to exogenous ABA and RNA-sequencing. A total of 3,242 differentially expressed genes (DEGs) were identified in four pairwise comparisons. Overall, ABA-induced changes in gene expression were enhanced in mop1-1 homozygous plants. The highest number of DEGs were identified in ABA-induced mop1-1 mutants, including many transcription factors; this suggests combinatorial regulatory scenarios including direct and indirect transcriptional responses to genetic disruption ( mop1-1 ) and/or stimulus-induction of a hierarchical, cascading network of responsive genes. Additionally, a modest increase in CHH methylation at putative MOP1-RdDM loci in response to ABA was observed in some genotypes, suggesting that epigenetic variation might influence environmentally-induced transcriptional responses in maize. 
    more » « less
  4. Abstract In plants, cytidine-to-uridine (C-to-U) editing is a crucial step in processing mitochondria- and chloroplast-encoded transcripts. This editing requires nuclear-encoded proteins including members of the pentatricopeptide (PPR) family, especially PLS-type proteins carrying the DYW domain.IPI1/emb175/PPR103is a nuclear gene encoding a PLS-type PPR protein essential for survival inArabidopsis thalianaand maize. Arabidopsis IPI1 was identified as likely interacting with ISE2, a chloroplast-localized RNA helicase associated with C-to-U RNA editing in Arabidopsis and maize. Notably, while the Arabidopsis andNicotianaIPI1 orthologs possess complete DYW motifs at their C-termini, the maize homolog, ZmPPR103, lacks this triplet of residues which are essential for editing. In this study we examined the function of IPI1 in chloroplast RNA processing inN. benthamianato gain insight into the importance of the DYW domain to the function of the EMB175/PPR103/ IPI1 proteins. Structural predictions suggest that evolutionary loss of residues identified as critical for catalyzing C-to-U editing in other members of this class of proteins, were likely to lead to reduced or absent editing activity in theNicotianaand Arabidopsis IPI1 orthologs. Virus-induced gene silencing ofNbIPI1led to defects in chloroplast ribosomal RNA processing and changes to stability ofrpl16transcripts, revealing conserved function with its maize ortholog.NbIPI1-silenced plants also had defective C-to-U RNA editing in several chloroplast transcripts, a contrast from the finding that maize PPR103 had no role in editing. The results indicate that in addition to its role in transcript stability, NbIPI1 may contribute to C-to-U editing inN. benthamianachloroplasts. 
    more » « less
  5. Estelle, Mark (Ed.)
    The nuclear basket (NB) is an essential structure of the nuclear pore complex (NPC) and serves as a dynamic and multifunctional platform that participates in various critical nuclear processes, including cargo transport, molecular docking, and gene expression regulation. However, the underlying molecular mechanisms are not completely understood, particularly in plants. Here, we identified a guanylate-binding protein (GBP)-like GTPase (GBPL3) as a novel NPC basket component in Arabidopsis . Using fluorescence and immunoelectron microscopy, we found that GBPL3 localizes to the nuclear rim and is enriched in the nuclear pore. Proximity labeling proteomics and protein-protein interaction assays revealed that GBPL3 is predominantly distributed at the NPC basket, where it physically associates with NB nucleoporins and recruits chromatin remodelers, transcription apparatus and regulators, and the RNA splicing and processing machinery, suggesting a conserved function of the NB in transcription regulation as reported in yeasts and animals. Moreover, we found that GBPL3 physically interacts with the nucleoskeleton via disordered coiled-coil regions. Simultaneous loss of GBPL3 and 1 of the 4 Arabidopsis nucleoskeleton genes CRWN s led to distinct development- and stress-related phenotypes, ranging from seedling lethality to lesion development, and aberrant transcription of stress-related genes. Our results indicate that GBPL3 is a bona fide component of the plant NPC and physically and functionally connects the NB with the nucleoskeleton, which is required for the coordination of gene expression during plant development and stress responses. 
    more » « less