skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A clustering-based approach to ocean model–data comparison around Antarctica
Abstract. The Antarctic Continental Shelf seas (ACSS) are a critical, rapidly changingelement of the Earth system. Analyses of global-scale general circulationmodel (GCM) simulations, including those available through the Coupled ModelIntercomparison Project, Phase 6 (CMIP6), can help reveal the origins ofobserved changes and predict the future evolution of the ACSS. However, anevaluation of ACSS hydrography in GCMs is vital: previous CMIP ensemblesexhibit substantial mean-state biases (reflecting, for example, misplacedwater masses) with a wide inter-model spread. Because the ACSS are also asparely sampled region, grid-point-based model assessments are of limitedvalue. Our goal is to demonstrate the utility of clustering tools foridentifying hydrographic regimes that are common to different source fields(model or data), while allowing for biases in other metrics (e.g., water masscore properties) and shifts in region boundaries. We apply K-meansclustering to hydrographic metrics based on the stratification from one GCM(Community Earth System Model version 2; CESM2) and one observation-basedproduct (World Ocean Atlas 2018; WOA), focusing on the Amundsen,Bellingshausen and Ross seas. When applied to WOA temperature and salinityprofiles, clustering identifies “primary” and “mixed” regimes that havephysically interpretable bases. For example, meltwater-freshened coastalcurrents in the Amundsen Sea and a region of high-salinity shelf waterformation in the southwestern Ross Sea emerge naturally from the algorithm.Both regions also exhibit clearly differentiated inner- and outer-shelfregimes. The same analysis applied to CESM2 demonstrates that, althoughmean-state model biases in water mass T–S characteristics can be substantial,using a clustering approach highlights that the relative differences betweenregimes and the locations where each regime dominates are well representedin the model. CESM2 is generally fresher and warmer than WOA and has a limitedfresh-water-enriched coastal regimes. Given the sparsity of observations ofthe ACSS, this technique is a promising tool for the evaluation of a largermodel ensemble (e.g., CMIP6) on a circum-Antarctic basis.  more » « less
Award ID(s):
1744789
PAR ID:
10313569
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Ocean Science
Volume:
17
Issue:
1
ISSN:
1812-0792
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. The ice shelves of the West Antarctic Ice Sheet experience basal meltinginduced by underlying warm, salty Circumpolar Deep Water. Basal meltwater,along with runoff from ice sheets, supplies fresh buoyant water to acirculation feature near the coast, the Antarctic Coastal Current (AACC). The formation, structure, and coherence of the AACC has been well documented along the West Antarctic Peninsula (WAP). Observations from instrumented seals collected in the Bellingshausen Sea offer extensive hydrographic coverage throughout the year, providing evidence of the continuation of the westward flowing AACC from the WAP towards the Amundsen Sea. The observations reported here demonstrate that the coastal boundary current enters the eastern Bellingshausen Sea from the WAP and flows westward along the face of multiple ice shelves, including the westernmost Abbot Ice Shelf. The presence of the AACC in the western Bellingshausen Sea has implications for the export of water properties into the eastern Amundsen Sea, which we suggest may occur through multiple pathways, either along the coast or along the continental shelf break. The temperature, salinity, and density structure of the current indicates an increase in baroclinic transport as the AACC flows from the east to the west, and as it entrains meltwater from the ice shelves in the Bellingshausen Sea. The AACC acts as a mechanism to transport meltwater out of the Bellingshausen Sea and into the Amundsen and Ross seas, with the potential to impact, respectively, basal melt rates and bottom water formation in these regions. 
    more » « less
  2. Abstract Based on observational data analyses and idealized modeling experiments, we investigated the distinctive impacts of central Pacific (CP-) El Niño and eastern Pacific (EP-) El Niño on the Antarctic sea ice concentration (SIC) in austral spring (September to November). The tropical heat sources associated with EP-El Niño and the co-occurred positive phase of Indian Ocean Dipole (IOD) excite two branches of Rossby wave trains that propagate southeastward, causing an anomalous anticyclone over the eastern Ross-Amundsen-Bellingshausen Seas. Anomalous northerly (southerly) wind west (east) of the anomalous anticyclone favor poleward (offshore) movements of sea ice, resulting in a sea ice loss (growth) in the eastern Ross-Amundsen Seas (the Bellingshausen-Weddell Seas). Meanwhile, the anomalous northerly (southerly) wind also advected warmer and wetter (colder and drier) air into the eastern Ross-Amundsen Seas (the Bellingshausen-Weddell Seas), causing surface warming (cooling) through the enhanced (reduced) surface heat fluxes and thus contributing to the sea ice melting (growth). CP-El Niño, however, forces a Rossby wave train that generates an anomalous anticyclone in the eastern Ross-Amundsen Seas, 20° west of that caused by EP-El Niño. Consequently, a positive SIC anomaly occurs in the Bellingshausen Sea. A dry version of the Princeton atmospheric general circulation model was applied to verify the roles of anomalous heating in the tropics. The result showed that EP-El Niño can remotely induce an anomalous anticyclone and associated dipole temperature pattern in the Antarctic region, whereas CP-El Niño generates a similar anticyclone pattern with its location shift westward by 20° in longitudes. 
    more » « less
  3. Abstract The West Antarctic Ice Sheet is experiencing rapid thinning of its floating ice shelves, largely attributed to oceanic basal melt. Numerical models suggest that the Bellingshausen Sea has a key role in setting water properties in the Amundsen Sea and further downstream. Yet, observations confirming these pathways of volume and tracer exchange between coast and shelf break and their impact on inter‐sea exchange remain sparse. Here we analyze the circulation and distribution of glacial meltwater at the boundary between the Bellingshausen Sea and the Amundsen Sea using a combination of glider observations from January 2020 and hydrographic data from instrumented seals. Meltwater distributions over previously unmapped western regions of the continental shelf and slope reveal two distinct meltwater cores with different optical backscatter properties. At Belgica Trough, a subsurface meltwater peak is linked with hydrographic properties from Venable Ice Shelf. West of Belgica Trough, the vertical structure of meltwater concentration changes, with peak values occurring at greater depths and denser isopycnals. Hydrographic analysis suggests that the western (deep) meltwater core is supplied from the eastern part of Abbot Ice Shelf, and is exported to the shelf break via a previously‐overlooked bathymetric trough (here named Seal Trough). Hydrographic sections constructed from seal data reveal that the Antarctic Coastal Current extends west past Belgica Trough, delivering meltwater to the Amundsen Sea. Each of these circulation elements has distinct dynamical implications for the evolution of ice shelves and water masses both locally and downstream, in the Amundsen Sea and beyond. 
    more » « less
  4. This dataset includes annual, gridded Arctic sea ice seasonal transition metrics (dates and periods) for fifteen Coupled Model Intercomparison Project version 6 (CMIP6) models and the Community Earth System Model version 1.1 (CESM1.1) Large Ensemble (CESM LE) (Kay, et al., 2015). Seasonal transition dates include melt onset, opening, break-up, freeze onset, freeze-up and closing. Seasonal transition periods include the melt period, the seasonal loss-of-ice period, the freeze period, the seasonal gain-of-ice period, the melt season, the open water period and the outer ice-free period. Data are provided for one ensemble member of the following models: Australian Community Climate and Earth System Simulator CM2 (ACCESS-CM2), Beijing Climate Center Climate System Model 2 MR (BCC-CSM2-MR), Beijing Climate Center Earth System Model 1 (BCC-ESM1), Community Earth System Model 2 (CESM2), Community Earth System Model 2 FV2 (CESM2-FV2), Community Earth System Model 2 Whole Atmosphere Community Climate Model (CESM2-WACCM), Community Earth System Model 2 Whole Atmosphere Community Climate Model FV2 (CESM2-WACCM-FV2), Centre National de Recherches Météorologiques ESM 2-1 (CNRM-ESM2-1), Centre National de Recherches Météorologiques CM 6-1 (CNRM-CM6-1), EC-Earth3, Meteorological Research Institute Earth System Model 2-0 (MRI-ESM2-0), Norwegian Earth System Model 2 LM (NorESM2-LM) and Norwegian Earth System Model 2 MM (NorESM2-MM). Data are provided for 40 members of the Community Earth System Model Large Ensemble (CESM LE), 35 members of Canadian Earth System Model 5 (CanESM5) and 30 members of Institut Pierre Simon Laplace CM6A LR (IPSL-CM6A-LR). The data is stored in netcdf format, and includes metadata in the netcdf files. The raw CMIP6 and CESM LE model output that these transition metrics are calculated from are publicly available at https://esgf-node.llnl.gov/projects/cmip6/ and https://www.earthsystemgrid.org/ respectively. This dataset was created to evaluate climate model projections of Arctic sea ice using seasonal transition metrics in the context of both observations and internal variability. It is used in the article Smith, Jahn, Wang (2020), Seasonal transition dates can reveal biases in Arctic sea ice simulations, The Cryosphere, in press. The discussion paper with a link to the final paper can be found at https://doi.org/10.5194/tc-2020-81. This work was conducted at the University of Colorado Boulder from 2019-2020. 
    more » « less
  5. Abstract West Antarctic Ice Sheet mass loss is a major source of uncertainty in sea level projections. The primary driver of this melting is oceanic heat from Circumpolar Deep Water originating offshore in the Antarctic Circumpolar Current. Yet, in assessing melt variability, open ocean processes have received considerably less attention than those governing cross-shelf exchange. Here, we use Lagrangian particle release experiments in an ocean model to investigate the pathways by which Circumpolar Deep Water moves toward the continental shelf across the Pacific sector of the Southern Ocean. We show that Ross Gyre expansion, linked to wind and sea ice variability, increases poleward heat transport along the gyre’s eastern limb and the relative fraction of transport toward the Amundsen Sea. Ross Gyre variability, therefore, influences oceanic heat supply toward the West Antarctic continental slope. Understanding remote controls on basal melt is necessary to predict the ice sheet response to anthropogenic forcing. 
    more » « less