Despite the critical role of teachers in the educational process, few advanced learning technologies have been developed to support teacher-instruction or professional development. This lack of support is particularly acute for middle school math teachers, where only 37% felt well prepared to scaffold instruction to address the needs of diverse students in a national sample. To address this gap, the Advancing Middle School Teachers’ Understanding of Proportional Reasoning project is researching techniques to apply pedagogical virtual agents and dialog-based tutoring to enhance teachers' content knowledge and pedagogical content knowledge. This paper describes the design of a conversational, agent-based intelligent tutoring system to support teachers' professional development. Pedagogical strategies are presented that leverage a virtual human facilitator to tutor pedagogical content knowledge (how to teach proportions to students), as opposed to content knowledge (understanding proportions). The roles for different virtual facilitator capabilities are presented, including embedding actions into virtual agent dialog, open-response versus choice-based tutoring, ungraded pop-up sub-activities (e.g. whiteboard, calculator, note-taking). Usability feedback for a small cohort of instructors pursuing graduate studies was collected. In this feedback, teachers rated the system ease of use and perceived usefulness moderately well, but also reported confusion about what to expect from the system in terms of flow between lessons and support by the facilitator.
more »
« less
OpenTutor: Designing a Rapid-Authored Tutor that Learns as you Grade
Despite strong evidence that dialog-based intelligent tutoring systems (ITS) can increase learning gains, few courses include these tutors. In this research, we posit that existing dialog-based tutoring systems are not widely used because they are too complex and unfamiliar for a typical teacher to adapt or augment. OpenTutor is an open-source research project intended to scale up dialog-based tutoring by enabling ordinary teachers to rapidly author and improve dialog-based ITS, where authoring is presented through familiar tasks such as assessment item creation and grading. Formative usability results from a set of five non-CS educators are presented, which indicate that the OpenTutor system was relatively easy to use but that teachers would closely consider the cost benefit for time vs. student outcomes. Specifically, while OpenTutor grading was faster than expected, teachers reported that they would only spend any additional time (compared to a multiple choice) if the content required deeper learning. To decrease time to train answer classifiers, OpenTutor is investigating ways to reduce cold-start problems for tutoring dialogs.
more »
« less
- Award ID(s):
- 1852583
- PAR ID:
- 10313588
- Date Published:
- Journal Name:
- The International FLAIRS Conference Proceedings
- Volume:
- 34
- Issue:
- 1
- ISSN:
- 2334-0762
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present and evaluate a machine learning based system that automatically grades audios of students speaking a foreign language. The use of automated systems to aid the assessment of student performance holds great promise in augmenting the teacher’s ability to provide meaningful feedback and instruction to students. Teachers spend a significant amount of time grading student work and the use of these tools can save teachers a significant amount of time on their grading. This additional time could be used to give personalized attention to each student. Significant prior research has focused on the grading of closed-form problems, open-ended essays and textual content. However, little research has focused on audio content that is much more prevalent in the language-study education. In this paper, we explore the development of automated assessment tools for audio responses in a college-level Chinese language-learning course. We analyze several challenges faced while working with data of this type as well as the generation and extraction of features for the purpose of building machine learning models to aid in the assessment of student language learning.more » « less
-
We present and evaluate a machine learning based system that automatically grades audios of students speaking a foreign language. The use of automated systems to aid the assessment of student performance holds great promise in augmenting the teacher’s ability to provide meaningful feedback and instruction to students. Teachers spend a significant amount of time grading student work and the use of these tools can save teachers a significant amount of time on their grading. This additional time could be used to give personalized attention to each student. Significant prior research has focused on the grading of closed-form problems, open-ended essays and textual content. However, little research has focused on audio content that is much more prevalent in language study education. In this paper, we explore the development of automated assessment tools for audio responses in a college-level Chinese language-learning course. We analyze several challenges faced while working with data of this type as well as the generation and extraction of features for the purpose of building machine learning models to aid in the assessment of student language learning.more » « less
-
Online education technologies, such as intelligent tutoring systems, have garnered popularity for their automation. Whether it be automated support systems for teachers (grading, feedback, summary statistics, etc.) or support systems for students (hints, common wrong answer messages, scaffolding), these systems have built a well rounded support system for both students and teachers alike. The automation of these online educational technologies, such as intelligent tutoring systems, have often been limited to questions with well structured answers such as multiple choice or fill in the blank. Recently, these systems have begun adopting support for a more diverse set of question types. More specifically, open response questions. A common tool for developing automated open response tools, such as automated grading or automated feedback, are pre-trained word embeddings. Recent studies have shown that there is an underlying bias within the text these were trained on. This research aims to identify what level of unfairness may lie within machine learned algorithms which utilize pre-trained word embeddings. We attempt to identify if our ability to predict scores for open response questions vary for different groups of student answers. For instance, whether a student who uses fractions as opposed to decimals. By performing a simulated study, we are able to identify the potential unfairness within our machine learned models with pre-trained word embeddings.more » « less
-
Online education technologies, such as intelligent tutoring systems, have garnered popularity for their automation. Wh- ether it be automated support systems for teachers (grading, feedback, summary statistics, etc.) or support systems for students (hints, common wrong answer messages, scaffold- ing), these systems have built a well rounded support sys- tem for both students and teachers alike. The automation of these online educational technologies, such as intelligent tutoring systems, have often been limited to questions with well structured answers such as multiple choice or fill in the blank. Recently, these systems have begun adopting support for a more diverse set of question types. More specifically, open response questions. A common tool for developing au- tomated open response tools, such as automated grading or automated feedback, are pre-trained word embeddings. Re- cent studies have shown that there is an underlying bias within the text these were trained on. This research aims to identify what level of unfairness may lie within machine learned algorithms which utilize pre-trained word embed- dings. We attempt to identify if our ability to predict scores for open response questions vary for different groups of stu- dent answers. For instance, whether a student who uses fractions as opposed to decimals. By performing a simu- lated study, we are able to identify the potential unfairness within our machine learned models with pre-trained word embeddings.more » « less