Estimates of movement costs are essential for understanding energetic and life-history trade-offs. Although overall dynamic body acceleration (ODBA) derived from accelerometer data is widely used as a proxy for energy expenditure (EE) in free-ranging animals, its utility has not been tested in species that predominately use body rotations or exploit environmental energy for movement. We tested a suite of sensor-derived movement metrics as proxies for EE in two species of albatrosses, which routinely use dynamic soaring to extract energy from the wind to reduce movement costs. Birds were fitted with a combined heart-rate, accelerometer, magnetometer and GPS logger, and relationships between movement metrics and heart rate-derived V̇O2, an indirect measure of EE, were analyzed during different flight and activity modes. When birds were exclusively soaring, a metric derived from angular velocity on the yaw axis provided a useful proxy of EE. Thus, body rotations involved in dynamic soaring have clear energetic costs, albeit considerably lower than those of the muscle contractions required for flapping flight. We found that ODBA was not a useful proxy for EE in albatrosses when birds were exclusively soaring. As albatrosses spend much of their foraging trips soaring, ODBA alone was a poor predictor of EE in albatrosses. Despite the lower percentage of time flapping, the number of flaps was a useful metric when comparing EE across foraging trips. Our findings highlight that alternative metrics, beyond ODBA, may be required to estimate energy expenditure from inertial sensors in animals whose movements involve extensive body rotations.
- Award ID(s):
- 1651904
- PAR ID:
- 10313608
- Date Published:
- Journal Name:
- Movement Ecology
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2051-3933
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
Abstract Temporal accuracy is a fundamental characteristic of logging technology and is needed to correlate data streams. Single biologgers sensing animal movement (accelerometers, gyroscope, magnetometers, collectively inertial measurement unit; IMU) have been extensively used to study the ecology of animals. To better capture whole body movement and increase the accuracy of behavior classification, there is a need to deploy multiple loggers on a single individual to capture the movement of multiple body parts. Yet due to temporal drift, accurately aligning multiple IMU datasets can be problematic, especially as deployment duration increases. In this paper we quantify temporal drift and errors in commercially available IMU data loggers using a combination of robotic and animal borne experiments. The variance in drift rate within a tag is over an order of magnitude lower (
σ = 0.001 s h−1) than the variance between tags (σ = 0.015 s·h−1), showing that recording frequency is a characteristic of each tag and not a random variable. Furthermore, we observed a large offset (0.54 ± 0.016 s·h−1) between two groups of tags that had differing recording frequencies, and we observed three instances of instantaneous temporal jumps within datasets introducing errors into the data streams. Finally, we show that relative drift rates can be estimated even when deployed on animals displaying various behaviors without the tags needing to be simultaneously moved. For the tags used in this study, drift rates can vary significantly between tags, are repeatable, and can be accurately measured in the field. The temporal alignment of multiple tag datasets allows researchers to deploy multiple tags on an individual animal which will greatly increase our knowledge of movement kinematics and expand the range of movement characteristics that can be used for behavioral classification. -
While the availability of low-cost micro electro-mechanical systems (MEMS) accelerometers, gyroscopes, and magnetometers initially seemed to promise the possibility of using them to easily track the position and orientation of virtually any object that they could be attached to, this promise has not yet been fulfilled. Navigation-grade accelerometers and gyroscopes have long been the basis for tracking ships and aircraft, but the signals from low-cost MEMS accelerometers and gyroscopes are still orders of magnitude poorer in quality (e.g., bias stability). Therefore, the applications of MEMS inertial measurement units (IMUs), containing tri-axial accelerometers and gyroscopes, are currently not as extensive as they were expected to be. Even the addition of MEMS tri-axial magnetometers, to conform magnetic, angular rate, and gravity (MARG) sensor modules, has not fully overcome the challenges involved in using these modules for long-term orientation estimation, which would be of great benefit for the tracking of human–computer hand-held controllers or tracking of Internet-Of-Things (IoT) devices. Here, we present an algorithm, GMVDμK (or simply GMVDK), that aims at taking full advantage of all the signals available from a MARG module to robustly estimate its orientation, while preventing damaging overcorrections, within the context of a human–computer interaction application. Through experimental comparison, we show that GMVDK is more robust to magnetic disturbances than three other MARG orientation estimation algorithms in representative trials.
-
This article reports an adaptive sensor bias observer and attitude observer operating directly on [Formula: see text] for true-north gyrocompass systems that utilize six-degree-of-freedom inertial measurement units (IMUs) with three-axis accelerometers and three-axis angular rate gyroscopes (without magnetometers). Most present-day low-cost robotic vehicles employ attitude estimation systems that employ microelectromechanical system (MEMS) magnetometers, angular rate gyros, and accelerometers to estimate magnetic attitude (roll, pitch, and magnetic heading) with limited heading accuracy. Present-day MEMS gyros are not sensitive enough to dynamically detect the Earth’s rotation, and thus cannot be used to estimate true-north geodetic heading. Relying on magnetic compasses can be problematic for vehicles that operate in environments with magnetic anomalies and those requiring high-accuracy navigation as the limited accuracy ([Formula: see text] error) of magnetic compasses is typically the largest error source in underwater vehicle navigation systems. Moreover, magnetic compasses need to undergo time-consuming recalibration for hard-iron and soft-iron errors every time a vehicle is reconfigured with a new instrument or other payload, as very frequently occurs on oceanographic marine vehicles. In contrast, the gyrocompass system reported herein utilizes fiber optic gyroscope (FOG) IMU angular rate gyro and MEMS accelerometer measurements (without magnetometers) to dynamically estimate the instrument’s time-varying true-north attitude (roll, pitch, and geodetic heading) in real-time while the instrument is subject to a priori unknown rotations. This gyrocompass system is immune to magnetic anomalies and does not require recalibration every time a new payload is added to or removed from the vehicle. Stability proofs for the reported bias and attitude observers, preliminary simulations, and a full-scale vehicle trial are reported that suggest the viability of the true-north gyrocompass system to provide dynamic real-time true-north heading, pitch, and roll utilizing a comparatively low-cost FOG IMU.
-
Abstract Self-injurious behavior (SIB) is among the most dangerous concerns in autism spectrum disorder (ASD), often requiring detailed and tedious management methods. Sensor-based behavioral monitoring could address the limitations of these methods, though the complex problem of classifying variable behavior should be addressed first. We aimed to address this need by developing a group-level model accounting for individual variability and potential nonlinear trends in SIB, as a secondary analysis of existing data. Ten participants with ASD and SIB engaged in free play while wearing accelerometers. Movement data were collected from > 200 episodes and 18 different types of SIB. Frequency domain and linear movement variability measures of acceleration signals were extracted to capture differences in behaviors, and metrics of nonlinear movement variability were used to quantify the complexity of SIB. The multi-level logistic regression model, comprising of 12 principal components, explained > 65% of the variance, and classified SIB with > 75% accuracy. Our findings imply that frequency-domain and movement variability metrics can effectively predict SIB. Our modeling approach yielded superior accuracy than commonly used classifiers (~ 75 vs. ~ 64% accuracy) and had superior performance compared to prior reports (~ 75 vs. ~ 69% accuracy) This work provides an approach to generating an accurate and interpretable group-level model for SIB identification, and further supports the feasibility of developing a real-time SIB monitoring system.