skip to main content


Title: Efficient local locking for massively multithreaded in-memory hash-based operators
Abstract The join and group-by aggregation are two memory intensive operators that are affecting the performance of relational databases. Hashing is a common approach used to implement both operators. Recent paradigm shifts in multi-core processor architectures have reinvigorated research into how the join and group-by aggregation operators can leverage these advances. However, the poor spatial locality of the hashing approach has hindered performance on multi-core processor architectures which rely on using large cache hierarchies for latency mitigation. Multithreaded architectures can better cope with poor spatial locality by masking memory latency with many outstanding requests. Nevertheless, the number of parallel threads, even in the most advanced multithreaded processors, such as UltraSPARC, is not enough to fully cover the main memory access latency. In this paper, we explore the hardware re-configurability of FPGAs to enable deeper execution pipelines that maintain hundreds (instead of tens) of outstanding memory requests across four FPGAs-drastically increasing concurrency and throughput. We present two end-to-end in-memory accelerators for the join and group-by aggregation operators using FPGAs. Both accelerators use massive multithreading to mask long memory delays of traversing linked-list data structures, while concurrently managing hundreds of thread states across four FPGAs locally. We explore how content addressable memories can be intermixed within our multithreaded designs to act as a synchronizing cache , which enforces locks and merges jobs together before they are written to memory. Throughput results for our hash-join operator accelerator show a speedup between 2 $$\times $$ × and 3.4 $$\times $$ × over the best multi-core approaches with comparable memory bandwidths on uniform and skewed datasets. The accelerator for the hash-based group-by aggregation operator demonstrates that leveraging CAMs achieves average speedup of 3.3 $$\times $$ × with a best case of 9.4 $$\times $$ × in terms of throughput over CPU implementations across five types of data distributions.  more » « less
Award ID(s):
1838222
NSF-PAR ID:
10313677
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
The VLDB Journal
Volume:
30
Issue:
3
ISSN:
1066-8888
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sparse linear algebra is an important kernel in many different applications. Among various sparse general matrix-matrix multiplication (SpGEMM) algorithms, Gustavson’s column-wise SpGEMM has good locality when reading input matrix and can be easily parallelized by distributing the computation of different columns of an output matrix to different processors. However, the sparse accumulation (SPA) step in column-wise SpGEMM, which merges partial sums from each of the multiplications by the row indices, is still a performance bottleneck. The state-of-the-art software implementation uses a hash table for partial sum search in the SPA, which makes SPA the largest contributor to the execution time of SpGEMM. There are three reasons that cause the SPA to become the bottleneck: (1) hash probing requires data-dependent branches that are difficult for a branch predictor to predict correctly; (2) the accumulation of partial sum is dependent on the results of the hash probing, which makes it difficult to hide the hash probing latency; and (3) hash collision requires time-consuming linear search and optimizations to reduce these collisions require an accurate estimation of the number of non-zeros in each column of the output matrix. This work proposes ASA architecture to accelerate the SPA. ASA overcomes the challenges of SPA by (1) executing the partial sum search and accumulate with a single instruction through ISA extension to eliminate data-dependent branches in hash probing, (2) using a dedicated on-chip cache to perform the search and accumulation in a pipelined fashion, (3) relying on the parallel search capability of a set-associative cache to reduce search latency, and (4) delaying the merging of overflowed entries. As a result, ASA achieves an average of 2.25× and 5.05× speedup as compared to the state-of-the-art software implementation of a Markov clustering application and its SpGEMM kernel, respectively. As compared to a state-of-the-art hashing accelerator design, ASA achieves an average of 1.95× speedup in the SpGEMM kernel. 
    more » « less
  2. With slowing technology scaling, specialized accelerators are increasingly attractive solutions to continue expected generational scaling of performance. However, in order to accelerate more advanced algorithms or those from challenging domains, supporting \emph{data-dependence} becomes necessary. This manifests as either data-dependent control (eg. join two sparse lists), or data-dependent memory accesses (eg. hash-table access). These forms of data-dependence inherently couple compute with memory, and also preclude efficient vectorization -- defeating the traditional mechanisms of programmable accelerators (eg. GPUs). Our goal is to develop an accelerator which is broadly applicable across algorithms with and without data-dependence. To this end, we first identify forms of data-dependence which are both common and possible to exploit with specialized hardware: specifically stream-join and alias-free indirection. Then, we create an accelerator with an interface to support these, called the Sparse Processing Unit (SPU). SPU supports alias-free indirection with a compute-enabled scratchpad and aggressive stream reordering and stream-join with a novel dataflow control model for a reconfigurable systolic compute-fabric. Finally, we add robustness across datatypes by adding decomposability across the compute and memory pipelines. SPU achieves 16.5$\times$, 10.3x, and 14.2x over a 24-core SKL CPU on ML, database, and graph algorithms respectively. SPU achieves similar performance to domain-specific accelerators. For ML, SPU achieves 1.8-7x speedup against a similarly provisioned GPGPU, with much less area and power. 
    more » « less
  3. The continued growth in the processing power of FPGAs coupled with high bandwidth memories (HBM), makes systems like the Xilinx U280 credible platforms for linear solvers which often dominate the run time of scientific and engineering applications. In this paper, we present Callipepla, an accelerator for a preconditioned conjugate gradient linear solver (CG). FPGA acceleration of CG faces three challenges: (1) how to support an arbitrary problem and terminate acceleration processing on the fly, (2) how to coordinate long-vector data flow among processing modules, and (3) how to save off-chip memory bandwidth and maintain double (FP64) precision accuracy. To tackle the three challenges, we present (1) a stream-centric instruction set for efficient streaming processing and control, (2) vector streaming reuse (VSR) and decentralized vector flow scheduling to coordinate vector data flow among modules and further reduce off-chip memory access latency with a double memory channel design, and (3) a mixed precision scheme to save bandwidth yet still achieve effective double precision quality solutions. To the best of our knowledge, this is the first work to introduce the concept of VSR for data reusing between on-chip modules to reduce unnecessary off-chip accesses and enable modules working in parallel for FPGA accelerators. We prototype the accelerator on a Xilinx U280 HBM FPGA. Our evaluation shows that compared to the Xilinx HPC product, the XcgSolver, Callipepla achieves a speedup of 3.94×, 3.36× higher throughput, and 2.94× better energy efficiency. Compared to an NVIDIA A100 GPU which has 4× the memory bandwidth of Callipepla, we still achieve 77% of its throughput with 3.34× higher energy efficiency. The code is available at https://github.com/UCLA-VAST/Callipepla. 
    more » « less
  4. Graph processing recently received intensive interests in light of a wide range of needs to understand relationships. It is well-known for the poor locality and high memory bandwidth requirement. In conventional architectures, they incur a significant amount of data movements and energy consumption which motivates several hardware graph processing accelerators. The current graph processing accelerators rely on memory access optimizations or placing computation logics close to memory. Distinct from all existing approaches, we leverage an emerging memory technology to accelerate graph processing with analog computation. This paper presents GRAPHR, the first ReRAM-based graph processing accelerator. GRAPHR follows the principle of near-data processing and explores the opportunity of performing massive parallel analog operations with low hardware and energy cost. The analog computation is suitable for graph processing because: 1) The algorithms are iterative and could inherently tolerate the imprecision; 2) Both probability calculation (e.g., PageRank and Collaborative Filtering) and typical graph algorithms involving integers (e.g., BFS/SSSP) are resilient to errors. The key insight of GRAPHR is that if a vertex program of a graph algorithm can be expressed in sparse matrix vector multiplication (SpMV), it can be efficiently performed by ReRAM crossbar. We show that this assumption is generally true for a large set of graph algorithms. GRAPHR is a novel accelerator architecture consisting of two components: memory ReRAM and graph engine (GE). The core graph computations are performed in sparse matrix format in GEs (ReRAM crossbars). The vector/matrix-based graph computation is not new, but ReRAM offers the unique opportunity to realize the massive parallelism with unprecedented energy efficiency and low hardware cost. With small subgraphs processed by GEs, the gain of performing parallel operations overshadows the wastes due to sparsity. The experiment results show that GRAPHR achieves a 16.01X (up to 132.67X) speedup and a 33.82X energy saving on geometric mean compared to a CPU baseline system. Compared to GPU, GRAPHR achieves 1.69X to 2.19X speedup and consumes 4.77X to 8.91X less energy. GRAPHR gains a speedup of 1.16X to 4.12X, and is 3.67X to 10.96X more energy efficiency compared to PIM-based architecture. 
    more » « less
  5. null (Ed.)
    Genomics is the foundation of precision medicine, global food security and virus surveillance. Exact-match is one of the most essential operations widely used in almost every step of genomics such as alignment, assembly, annotation, and compression. Modern genomics adopts Ferragina-Manzini Index (FMIndex) augmenting space-efficient Burrows-Wheeler transform (BWT) with additional data structures to permit ultra-fast exact-match operations. However, FM-Index is notorious for its poor spatial locality and random memory access pattern. Prior works create GPU-, FPGA-, ASIC- and even process-in-memory (PIM)based accelerators to boost FM-Index search throughput. Though they achieve the state-of-the-art FM-Index search throughput, the same as all prior conventional accelerators, FM-Index PIMs process only one DNA symbol after each DRAM row activation, thereby suffering from poor memory bandwidth utilization. In this paper, we propose a hardware accelerator, EXMA, to enhance FM-Index search throughput. We first create a novel EXMA table with a multi-task-learning (MTL)-based index to process multiple DNA symbols with each DRAM row activation. We then build an accelerator to search over an EXMA table. We propose 2-stage scheduling to increase the cache hit rate of our accelerator. We introduce dynamic page policy to improve the row buffer hit rate of DRAM main memory. We also present CHAIN compression to reduce the data structure size of EXMA tables. Compared to state-of-the-art FM-Index PIMs, EXMA improves search throughput by 4.9 ×, and enhances search throughput per Watt by 4.8×. 
    more » « less