Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Window queries are important analytical tools for ordered data and have been researched both in streaming and stored data environments. By incorporating ideas for window queries from existing streaming and stored data systems, we propose a new window syntax that makes a wide range of window queries easier to write and optimize. We have implemented this new window syntax in SQL++, an SQL extension that supports querying semistructured data, on top of AsterixDB, a Big Data Management System, thus allowing us to process window queries over large datasets in a parallel and efficient manner.more » « less
-
Abstract Today, data is being actively generated by a variety of devices, services, and applications. Such data is important not only for the information that it contains, but also for its relationships to other data and to interested users. Most existing Big Data systems focus onpassivelyanswering queries from users, rather thanactivelycollecting data, processing it, and serving it to users. To satisfy both passive and active requests at scale, application developers need either to heavily customize an existing passive Big Data system or to glue one together with systems likeStreaming EnginesandPub-sub services. Either choice requires significant effort and incurs additional overhead. In this paper, we present the BAD (Big Active Data) system as an end-to-end, out-of-the-box solution for this challenge. It is designed to preserve the merits of passive Big Data systems and introduces new features for actively serving Big Data to users at scale. We show the design and implementation of the BAD system, demonstrate how BAD facilitates providing both passive and active data services, investigate the BAD system’s performance at scale, and illustrate the complexities that would result from instead providing BAD-like services with a “glued” system.more » « less
-
Abstract We introduce theReverseSpatial Top-kKeyword (RSK)query, which is defined as:given a query term q, an integer k and a neighborhood size find all the neighborhoods of that size where q is in the top-k most frequent terms among the social posts in those neighborhoods. An obvious approach would be to partition the dataset with a uniform grid structure of a given cell size and identify the cells where this term is in the top-k most frequent keywords. However, this answer would be incomplete since it only checks for neighborhoods that are perfectly aligned with the grid. Furthermore, for every neighborhood (square) that is an answer, we can define infinitely more result neighborhoods by minimally shifting the square without including more posts in it. To address that, we need to identify contiguous regions where any point in the region can be the center of a neighborhood that satisfies the query. We propose an algorithm to efficiently answer an RSK query using an index structure consisting of a uniform grid augmented by materialized lists of term frequencies. We apply various optimizations that drastically improve query latency against baseline approaches. We also provide a theoretical model to choose the optimal cell size for the index to minimize query latency. We further examine a restricted version of the problem (RSKR) that limits the scope of the answer and propose efficientapproximatealgorithms. Finally, we examine how parallelism can improve performance by balancing the workload using a smartload slicingtechnique. Extensive experimental performance evaluation of the proposed methods using real Twitter datasets and crime report datasets, shows the efficiency of our optimizations and the accuracy of the proposed theoretical model.more » « less
-
Free, publicly-accessible full text available September 1, 2025
-
Progressive query processing enables data scientists to efficiently analyze and explore large datasets. Data scientists can start further analyses earlier if the progressive result can represent the complete results well. Most progressive processing frameworks carefully control which parts of the input to process in order to improve the quality of progressive results. The input control strategies work well when the data are processed uniformly. However, the progressive results will be biased towards the join keys if the processed data are not uniform. A recently proposed input&output framework named QPJ corrects the bias by temporarily hiding some results. The framework dynamically estimates the distribution of the complete result and outputs progressive results with a similar distribution to the estimated complete result. This demo presents QPJVis, which is a progressive query processing system designed to inherently process the progressive queries using the QPJ framework. Additionally, we also implement an input control framework, Prism, in QPJVis so that users can compare the difference between the input&output framework and a purely input framework.more » « lessFree, publicly-accessible full text available August 1, 2025
-
This paper demonstratesPynapple-G, an open-source library for scalable spatial grouping queries based on Apache Sedona (formerly known as GeoSpark). We demonstrate two modules, namely,SGPACandDDCEL, that support grouping points, grouping lines, and polygon overlays. TheSGPACmodule provides a large-scale grouping of spatial points by highly complex polygon boundaries. The grouping results aggregate the number of spatial points within the boundaries of each polygon. TheDDCELmodule provides the first parallelized algorithm to group spatial lines into a DCEL data structure and discovers planar polygons from scattered line segments. Exploiting the scalable DCEL, we support scalable overlay operations over multiple polygon layers to compute the layers' intersection, union, or difference. To showcasePyneapple-G, we have developed a frontend web application that enables users to interact with these modules, select their data layers or data points, and view results on an interactive map. We also provide interactive notebooks demonstrating the superiority and simplicity ofPyneapple-Gto help social scientists and developers explore its full potential.more » « lessFree, publicly-accessible full text available August 1, 2025
-
Query optimization is a key component in database management systems (DBMS) and distributed data processing platforms. Recent research in the database community incorporated techniques from artificial intelligence to enhance query optimization. Various learning models have been extended and applied to the query optimization tasks, including query execution plan, query rewriting, and cost estimation. The tasks involved in query optimization differ based on the type of data being processed, such as relational data or spatial geometries. This tutorial reviews recent learning-based approaches for spatial query optimization tasks. We go over methods designed specifically for spatial data, as well as solutions proposed for high-dimensional data. Additionally, we present learning-based spatial indexing and spatial partitioning methods, which are also vital components in spatial data processing. We also identify several open research problems in these fields.more » « lessFree, publicly-accessible full text available August 1, 2025
-
This paper studies the spatial group-by query over complex polygons. Given a set of spatial points and a set of polygons, the spatial group-by query returns the number of points that lie within the boundaries of each polygon. Groups are selected from a set of non-overlapping complex polygons, typically in the order of thousands, while the input is a large-scale dataset that contains hundreds of millions or even billions of spatial points. This problem is challenging because real polygons (like counties, cities, postal codes, voting regions, etc.) are described by very complex boundaries. We propose a highly-parallelized query processing framework to efficiently compute the spatial group-by query on highly skewed spatial data. We also propose an effective query optimizer that adaptively assigns the appropriate processing scheme based on the query polygons. Our experimental evaluation with real data and queries has shown significant superiority over all existing techniques.more » « less
-
ABSTRACT The Doubly Connected Edge List (DCEL) is an edge-list structure that has been widely utilized in spatial applications for planar topological computations. An important operation is the overlay which combines the DCELs of two input layers and can easily support spatial queries like the intersection, union and difference between these layers. However, existing sequential implementations for computing the overlay do not scale and fail to complete for large datasets (for example the US census tracks). In this paper we propose a distributed and scalable way to compute the overlay operation and its related supported queries. We address the issues involved in efficiently distributing the overlay operator and over various optimizations that improve performance. Our scalable solution can compute the overlay of very large real datasets (32M edges) in few minutes.more » « less