skip to main content


Title: The Sea Spray Chemistry and Particle Evolution study (SeaSCAPE): overview and experimental methods
Marine aerosols strongly influence climate through their interactions with solar radiation and clouds. However, significant questions remain regarding the influences of biological activity and seawater chemistry on the flux, chemical composition, and climate-relevant properties of marine aerosols and gases. Wave channels, a traditional tool of physical oceanography, have been adapted for large-scale ocean-atmosphere mesocosm experiments in the laboratory. These experiments enable the study of aerosols under controlled conditions which isolate the marine system from atmospheric anthropogenic and terrestrial influences. Here, we present an overview of the 2019 Sea Spray Chemistry and Particle Evolution (SeaSCAPE) study, which was conducted in an 11 800 L wave channel which was modified to facilitate atmospheric measurements. The SeaSCAPE campaign sought to determine the influence of biological activity in seawater on the production of primary sea spray aerosols, volatile organic compounds (VOCs), and secondary marine aerosols. Notably, the SeaSCAPE experiment also focused on understanding how photooxidative aging processes transform the composition of marine aerosols. In addition to a broad range of aerosol, gas, and seawater measurements, we present key results which highlight the experimental capabilities during the campaign, including the phytoplankton bloom dynamics, VOC production, and the effects of photochemical aging on aerosol production, morphology, and chemical composition. Additionally, we discuss the modifications made to the wave channel to improve aerosol production and reduce background contamination, as well as subsequent characterization experiments. The SeaSCAPE experiment provides unique insight into the connections between marine biology, atmospheric chemistry, and climate-relevant aerosol properties, and demonstrates how an ocean-atmosphere-interaction facility can be used to isolate and study reactions in the marine atmosphere in the laboratory under more controlled conditions.  more » « less
Award ID(s):
1801971
NSF-PAR ID:
10313737
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Environmental Science: Processes & Impacts
ISSN:
2050-7887
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Aerosols impact climate, human health, and the chemistry of the atmosphere, and aerosol pH plays a major role in the physicochemical properties of the aerosol. However, there remains uncertainty as to whether aerosols are acidic, neutral, or basic. In this research, we show that the pH of freshly emitted (nascent) sea spray aerosols is significantly lower than that of sea water (approximately four pH units, with pH being a log scale value) and that smaller aerosol particles below 1 μm in diameter have pH values that are even lower. These measurements of nascent sea spray aerosol pH, performed in a unique ocean−atmosphere facility, provide convincing data to show that acidification occurs “across the interface” within minutes, when aerosols formed from ocean surface waters become airborne. We also show there is a correlation between aerosol acidity and dissolved carbon dioxide but no correlation with marine biology within the seawater. We discuss the mechanisms and contributing factors to this acidity and its implications on atmospheric chemistry. 
    more » « less
  2. Abstract

    Oceans are, generally, relatively weak sources of ice nucleating particles (INPs). Thus, dust transported from terrestrial regions can dominate atmospheric INP concentrations even in remote marine regions. Studies of ocean‐emitted INPs have focused upon sea spray aerosols containing biogenic species. Even though large concentrations of dust are transported over marine regions, resuspended dust has never been explicitly considered as another possible source of ocean‐emitted INPs. Current models assume that deposited dust is not re‐emitted from surface waters. Our laboratory studies of aerosol particles produced from coastal seawater and synthetic seawater doped with dust show that dust can indeed be ejected from water during bubble bursting. INP concentration measurements show these ejected dust particles retain ice nucleating activity. Doping synthetic seawater to simulate a strong dust deposition event produced INPs active at temperatures colder than −13°C and INP concentrations 1 to 2 orders of magnitude greater than either lab sea spray or marine boundary layer measurements. The relevance of these laboratory findings is highlighted by single‐particle composition measurements along the Californian coast where at least 9% of dust particles were mixed with sea salt. Additionally, global modeling studies show that resuspension of dust from the ocean could exert the most impact over the Southern Ocean, where ocean‐emitted INPs are thought to dominate atmospheric INP populations. More work characterizing the factors governing the resuspension of dust particles is required to understand the potential impact upon clouds.

     
    more » « less
  3. Heterogeneous ice nucleation in the atmosphere regulates cloud properties, such as phase (ice versus liquid) and lifetime. Aerosol particles of marine origin are relevant ice nucleating particle sources when marine aerosol layers are lifted over mountainous terrain and in higher latitude ocean boundary layers, distant from terrestrial aerosol sources. Among many particle compositions associated with ice nucleation by sea spray aerosols are highly saturated fatty acids. Previous studies have not demonstrated their ability to freeze dilute water droplets. This study investigates ice nucleation by monolayers at the surface of supercooled droplets and as crystalline particles at temperatures exceeding the threshold for homogeneous freezing. Results show the poor efficiency of long chain fatty acid (C16, C18) monolayers in templating freezing of pure water droplets and seawater subphase to temperatures of at least −30 °C, consistent with theory. This contrasts with freezing of fatty alcohols (C22 used here) at nearly 20 °C warmer. Evaporation of μL-sized droplets to promote structural compression of a C19 acid monolayer did not favor warmer ice formation of drops. Heterogeneous ice nucleation occurred for nL-sized droplets condensed on 5 to 100 μm crystalline particles of fatty acid (C12 to C20) at a range of temperatures below −28 °C. These experiments suggest that fatty acids nucleate ice at warmer than −36 °C only when the crystalline phase is present. Rough estimates of ice active site densities are consistent with those of marine aerosols, but require knowledge of the proportion of surface area comprised of fatty acids for application. 
    more » « less
  4. Abstract. Sea salt aerosols play an important role in the radiationbudget and atmospheric composition over the Arctic, where the climate israpidly changing. Previous observational studies have shown that Arctic sea ice leads are an important source of sea salt aerosols, and modeling efforts have also proposed blowing snow sublimation as a source. In this study,size-resolved atmospheric particle number concentrations and chemicalcomposition were measured at the Arctic coastal tundra site ofUtqiaġvik, Alaska, during spring (3 April–7 May 2016). Blowing snow conditions were observed during 25 % of the 5-week study period andwere overpredicted by a commonly used blowing snow parameterization based solely on wind speed and temperature. Throughout the study, open leads werepresent locally. During periods when blowing snow was observed, significantincreases in the number concentrations of 0.01–0.06 µm particles(factor of 6, on average) and 0.06–0.3 µm particles (67 %, on average) and a significant decrease (82 %, on average) in 1–4 µmparticles were observed compared to low wind speed periods. These size distribution changes were likely caused by the generation of ultrafineparticles from leads and/or blowing snow, with scavenging of supermicronparticles by blowing snow. At elevated wind speeds, both submicron andsupermicron sodium and chloride mass concentrations were enhanced,consistent with wind-dependent local sea salt aerosol production. Atmoderate wind speeds below the threshold for blowing snow as well as during observed blowing snow, individual sea spray aerosol particles were measured.These individual salt particles were enriched in calcium relative to sodiumin seawater due to the binding of this divalent cation with organic matter in the sea surface microlayer and subsequent enrichment during seawaterbubble bursting. The chemical composition of the surface snowpack alsoshowed contributions from sea spray aerosol deposition. Overall, theseresults show the contribution of sea spray aerosol production from leads onboth aerosols and the surface snowpack. Therefore, if blowing snowsublimation contributed to the observed sea salt aerosol, the snow beingsublimated would have been impacted by sea spray aerosol deposition rather than upward brine migration through the snowpack. Sea spray aerosol production from leads is expected to increase, with thinning and fracturingof sea ice in the rapidly warming Arctic. 
    more » « less
  5. null (Ed.)
    The remote central Arctic during summertime has a pristine atmosphere with very low aerosol particle concentrations. As the region becomes increasingly ice-free during summer, enhanced ocean-atmosphere fluxes of aerosol particles and precursor gases may therefore have impacts on the climate. However, large knowledge gaps remain regarding the sources and physicochemical properties of aerosols in this region. Here, we present insights into the molecular composition of semi-volatile aerosol components collected in September 2018 during the MOCCHA (Microbiology-Ocean-Cloud-Coupling in the High Arctic) campaign as part of the Arctic Ocean 2018 expedition with the Swedish Icebreaker Oden . Analysis was performed offline in the laboratory using an iodide High Resolution Time-of-Flight Chemical Ionization Mass Spectrometer with a Filter Inlet for Gases and AEROsols (FIGAERO-HRToF-CIMS). Our analysis revealed significant signal from organic and sulfur-containing compounds, indicative of marine aerosol sources, with a wide range of carbon numbers and O : C ratios. Several of the sulfur-containing compounds are oxidation products of dimethyl sulfide (DMS), a gas released by phytoplankton and ice algae. Comparison of the time series of particulate and gas-phase DMS oxidation products did not reveal a significant correlation, indicative of the different lifetimes of precursor and oxidation products in the different phases. This is the first time the FIGAERO-HRToF-CIMS was used to investigate the composition of aerosols in the central Arctic. The detailed information on the molecular composition of Arctic aerosols presented here can be used for the assessment of aerosol solubility and volatility, which is relevant for understanding aerosol–cloud interactions. 
    more » « less