skip to main content


Title: Atmospheric particle abundance and sea salt aerosol observations in the springtime Arctic: a focus on blowing snow and leads
Abstract. Sea salt aerosols play an important role in the radiationbudget and atmospheric composition over the Arctic, where the climate israpidly changing. Previous observational studies have shown that Arctic sea ice leads are an important source of sea salt aerosols, and modeling efforts have also proposed blowing snow sublimation as a source. In this study,size-resolved atmospheric particle number concentrations and chemicalcomposition were measured at the Arctic coastal tundra site ofUtqiaġvik, Alaska, during spring (3 April–7 May 2016). Blowing snow conditions were observed during 25 % of the 5-week study period andwere overpredicted by a commonly used blowing snow parameterization based solely on wind speed and temperature. Throughout the study, open leads werepresent locally. During periods when blowing snow was observed, significantincreases in the number concentrations of 0.01–0.06 µm particles(factor of 6, on average) and 0.06–0.3 µm particles (67 %, on average) and a significant decrease (82 %, on average) in 1–4 µmparticles were observed compared to low wind speed periods. These size distribution changes were likely caused by the generation of ultrafineparticles from leads and/or blowing snow, with scavenging of supermicronparticles by blowing snow. At elevated wind speeds, both submicron andsupermicron sodium and chloride mass concentrations were enhanced,consistent with wind-dependent local sea salt aerosol production. Atmoderate wind speeds below the threshold for blowing snow as well as during observed blowing snow, individual sea spray aerosol particles were measured.These individual salt particles were enriched in calcium relative to sodiumin seawater due to the binding of this divalent cation with organic matter in the sea surface microlayer and subsequent enrichment during seawaterbubble bursting. The chemical composition of the surface snowpack alsoshowed contributions from sea spray aerosol deposition. Overall, theseresults show the contribution of sea spray aerosol production from leads onboth aerosols and the surface snowpack. Therefore, if blowing snowsublimation contributed to the observed sea salt aerosol, the snow beingsublimated would have been impacted by sea spray aerosol deposition rather than upward brine migration through the snowpack. Sea spray aerosol production from leads is expected to increase, with thinning and fracturingof sea ice in the rapidly warming Arctic.  more » « less
Award ID(s):
2127733 2000493 1738588
NSF-PAR ID:
10394201
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
22
Issue:
23
ISSN:
1680-7324
Page Range / eLocation ID:
15263 to 15285
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Anthropogenic and natural emissions contribute to enhanced concentrations of aerosols in the Arctic winter and early spring, with most attention being paid to anthropogenic aerosols that contribute to so-called Arctic haze. Less-well-studied wintertime sea-spray aerosols (SSAs) under Arctic haze conditions are the focus of this study, since they can make an important contribution to wintertime Arctic aerosol abundances. Analysis of field campaign data shows evidence for enhanced local sources of SSAs, including marine organics at Utqiaġvik (formerly known as Barrow) in northern Alaska, United States, during winter 2014. Models tend to underestimate sub-micron SSAs and overestimate super-micron SSAs in the Arctic during winter, including the base version of the Weather Research Forecast coupled with Chemistry (WRF-Chem) model used here, which includes a widely used SSA source function based on Gong et al. (1997). Quasi-hemispheric simulations for winter 2014 including updated wind speed and sea-surface temperature (SST) SSA emission dependencies and sources of marine sea-salt organics and sea-salt sulfate lead to significantly improved model performance compared to observations at remote Arctic sites, notably for coarse-mode sodium and chloride, which are reduced. The improved model also simulates more realistic contributions of SSAs to inorganic aerosols at different sites, ranging from 20 %–93 % in the observations. Two-thirds of the improved model performance is from the inclusion of the dependence on SSTs. The simulation of nitrate aerosols is also improved due to less heterogeneous uptake of nitric acid on SSAs in the coarse mode and related increases in fine-mode nitrate. This highlights the importance of interactions between natural SSAs and inorganic anthropogenic aerosols that contribute to Arctic haze. Simulation of organic aerosols and the fraction of sea-salt sulfate are also improved compared to observations. However, the model underestimates episodes with elevated observed concentrations of SSA components and sub-micron non-sea-salt sulfate at some Arctic sites, notably at Utqiaġvik. Possible reasons are explored in higher-resolution runs over northern Alaska for periods corresponding to the Utqiaġvik field campaign in January and February 2014. The addition of a local source of sea-salt marine organics, based on the campaign data, increases modelled organic aerosols over northern Alaska. However, comparison with previous available data suggests that local natural sources from open leads, as well as local anthropogenic sources, are underestimated in the model. Missing local anthropogenic sources may also explain the low modelled (sub-micron) non-sea-salt sulfate at Utqiaġvik. The introduction of a higher wind speed dependence for sub-micron SSA emissions, also based on Arctic data, reduces biases in modelled sub-micron SSAs, while sea-ice fractions, including open leads, are shown to be an important factor controlling modelled super-micron, rather than sub-micron, SSAs over the north coast of Alaska. The regional results presented here show that modelled SSAs are more sensitive to wind speed dependence but that realistic modelling of sea-ice distributions is needed for the simulation of local SSAs, including marine organics. This study supports findings from the Utqiaġvik field campaign that open leads are the primary source of fresh and aged SSAs, including marine organic aerosols, during wintertime at Utqiaġvik; these findings do not suggest an influence from blowing snow and frost flowers. To improve model simulations of Arctic wintertime aerosols, new field data on processes that influence wintertime SSA production, in particular for fine-mode aerosols, are needed as is improved understanding about possible local anthropogenic sources. 
    more » « less
  2. Abstract

    The Arctic warms nearly four times faster than the global average, and aerosols play an increasingly important role in Arctic climate change. In the Arctic, sea salt is a major aerosol component in terms of mass concentration during winter and spring. However, the mechanisms of sea salt aerosol production remain unclear. Sea salt aerosols are typically thought to be relatively large in size but low in number concentration, implying that their influence on cloud condensation nuclei population and cloud properties is generally minor. Here we present observational evidence of abundant sea salt aerosol production from blowing snow in the central Arctic. Blowing snow was observed more than 20% of the time from November to April. The sublimation of blowing snow generates high concentrations of fine-mode sea salt aerosol (diameter below 300 nm), enhancing cloud condensation nuclei concentrations up to tenfold above background levels. Using a global chemical transport model, we estimate that from November to April north of 70° N, sea salt aerosol produced from blowing snow accounts for about 27.6% of the total particle number, and the sea salt aerosol increases the longwave emissivity of clouds, leading to a calculated surface warming of +2.30 W m−2under cloudy sky conditions.

     
    more » « less
  3. Abstract

    Elevated concentrations of atmospheric bromine are known to cause ozone depletion in the Arctic, which is most frequently observed during springtime. We implement a detailed description of bromine and chlorine chemistry within the WRF‐Chem 4.1.1 model, and two different descriptions of Arctic bromine activation: (1) heterogeneous chemistry on surface snow on sea ice, triggered by ozone deposition to snow (Toyota et al., 2011https://doi.org/10.5194/acp-11-3949-2011), and (2) heterogeneous reactions on sea salt aerosols emitted through the sublimation of lofted blowing snow (Yang et al., 2008,https://doi.org/10.1029/2008gl034536). In both mechanisms, bromine activation is sustained by heterogeneous reactions on aerosols and surface snow. Simulations for spring 2012 covering the entire Arctic reproduce frequent and widespread ozone depletion events, and comparisons with observations of ozone show that these developments significantly improve model predictions during the Arctic spring. Simulations show that ozone depletion events can be initiated by both surface snow on sea ice, or by aerosols that originate from blowing snow. On a regional scale, in spring 2012, snow on sea ice dominates halogen activation and ozone depletion at the surface. During this period, blowing snow is a major source of Arctic sea salt aerosols but only triggers a few depletion events.

     
    more » « less
  4. Abstract. We use the GEOS-Chem chemical transport model to examine theinfluence of bromine release from blowing-snow sea salt aerosol (SSA) onspringtime bromine activation and O3 depletion events (ODEs) in theArctic lower troposphere. We evaluate our simulation against observations oftropospheric BrO vertical column densities (VCDtropo) from the GOME-2 (second Global Ozone Monitoring Experiment)and Ozone Monitoring Instrument (OMI) spaceborne instruments for 3 years (2007–2009), as well asagainst surface observations of O3. We conduct a simulation withblowing-snow SSA emissions from first-year sea ice (FYI; with a surface snowsalinity of 0.1 psu) and multi-year sea ice (MYI; with a surface snowsalinity of 0.05 psu), assuming a factor of 5 bromide enrichment of surfacesnow relative to seawater. This simulation captures the magnitude ofobserved March–April GOME-2 and OMI VCDtropo to within 17 %, as wellas their spatiotemporal variability (r=0.76–0.85). Many of the large-scalebromine explosions are successfully reproduced, with the exception of eventsin May, which are absent or systematically underpredicted in the model. Ifwe assume a lower salinity on MYI (0.01 psu), some of the bromine explosionsevents observed over MYI are not captured, suggesting that blowing snow overMYI is an important source of bromine activation. We find that the modeledatmospheric deposition onto snow-covered sea ice becomes highly enriched inbromide, increasing from enrichment factors of ∼5 inSeptember–February to 10–60 in May, consistent with composition observations of freshly fallen snow. We propose that this progressive enrichment indeposition could enable blowing-snow-induced halogen activation to propagateinto May and might explain our late-spring underestimate in VCDtropo.We estimate that the atmospheric deposition of SSA could increase snow salinityby up to 0.04 psu between February and April, which could be an importantsource of salinity for surface snow on MYI as well as FYI covered by deepsnowpack. Inclusion of halogen release from blowing-snow SSA in oursimulations decreases monthly mean Arctic surface O3 by 4–8 ppbv(15 %–30 %) in March and 8–14 ppbv (30 %–40 %) in April. We reproduce atransport event of depleted O3 Arctic air down to 40∘ Nobserved at many sub-Arctic surface sites in early April 2007. While oursimulation captures 25 %–40 % of the ODEs observed at coastal Arctic surfacesites, it underestimates the magnitude of many of these events and entirelymisses 60 %–75 % of ODEs. This difficulty in reproducing observed surfaceODEs could be related to the coarse horizontal resolution of the model, theknown biases in simulating Arctic boundary layer exchange processes, thelack of detailed chlorine chemistry, and/or the fact that we did not includedirect halogen activation by snowpack chemistry. 
    more » « less
  5. Abstract

    Oceans are, generally, relatively weak sources of ice nucleating particles (INPs). Thus, dust transported from terrestrial regions can dominate atmospheric INP concentrations even in remote marine regions. Studies of ocean‐emitted INPs have focused upon sea spray aerosols containing biogenic species. Even though large concentrations of dust are transported over marine regions, resuspended dust has never been explicitly considered as another possible source of ocean‐emitted INPs. Current models assume that deposited dust is not re‐emitted from surface waters. Our laboratory studies of aerosol particles produced from coastal seawater and synthetic seawater doped with dust show that dust can indeed be ejected from water during bubble bursting. INP concentration measurements show these ejected dust particles retain ice nucleating activity. Doping synthetic seawater to simulate a strong dust deposition event produced INPs active at temperatures colder than −13°C and INP concentrations 1 to 2 orders of magnitude greater than either lab sea spray or marine boundary layer measurements. The relevance of these laboratory findings is highlighted by single‐particle composition measurements along the Californian coast where at least 9% of dust particles were mixed with sea salt. Additionally, global modeling studies show that resuspension of dust from the ocean could exert the most impact over the Southern Ocean, where ocean‐emitted INPs are thought to dominate atmospheric INP populations. More work characterizing the factors governing the resuspension of dust particles is required to understand the potential impact upon clouds.

     
    more » « less