Youth-focused community and citizen science (CCS) is increasingly used to promote science learning and to increase the accessibility of the tools of scientific research among historically marginalized and underserved communities. CCS projects are frequently categorized according to their level of public participation and their distribution of power between professional scientists and participants from collaborative and co-created projects to projects where participants have limited roles within the science process. In this study, we examined how two different CCS models, a contributory design and a co-created design, influenced science self-efficacy and science interest among youth CCS participants. We administered surveys and conducted post-program interviews with youth participation in two different CCS projects in Alaska, the Winterberry Project and Fresh Eyes on Ice, each with a contributory and a co-created model. We found that youth participating in co-created CCS projects reflected more often on their science self-efficacy than did youth in contributory projects. The CCS program model did not influence youths’ science interest, which grew after participating in both contributory and co-created projects. Our findings suggest that when youth have more power and agency to make decisions in the science process, as in co-created projects, they have greater confidence in their abilities to conduct science. Further, participating in CCS projects excites and engages youth in science learning, regardless of the CCS program design.
more »
« less
Harnessing the Power of Community Science to Address Data Gaps in Arctic Observing: Invasive Species in Alaska as Case Examples
The Arctic is undergoing large-scale changes that are likely to accelerate in future decades such as introductions and expansions of invasive species. The Arctic is in a unique position to prevent new introductions and spread of existing invasive species by adopting policies and actions aimed at early detection. Responding to threats from invasive species to minimize impacts to ecosystems, communities, food security, and northern economies will necessitate extensive observations and monitoring, but resource managers often face decisions without having adequate data and resources at hand. Local observing programs such as citizen science and community-based monitoring programs present attractive methods for increasing observing capacity that span contributory and co-created approaches while raising awareness of an issue among stakeholders. While the co-created model has been widely applied and encouraged in the Arctic context, contributory citizen science programs offer an additional tool for addressing observing needs in the Arctic. We showcase three contributory citizen science programs related to freshwater, terrestrial, and marine environments that have supported the objectives of the Alaska Invasive Species Partnership. We discuss criteria for achieving ARIAS priority actions at the participant scale related to participants’ motivation and participants’ understanding of the value of their contributions, at the programmatic scale, for example promoting accessible, reciprocal, and transparent knowledge exchange, and at the policy and science scale where management action is data driven. The approach is aimed at successful integration of citizen science into Arctic policy making. Finally, we discuss challenges related to broader global data collection and future directions for contributory citizen science within Arctic observing networks.
more »
« less
- PAR ID:
- 10313755
- Date Published:
- Journal Name:
- ARCTIC
- Volume:
- 74
- Issue:
- 5
- ISSN:
- 0004-0843
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Large-scale, scientist-led, participatory science (citizen science) projects often engage participants who are primarily white, wealthy, and well-educated. Calls to diversify contributory projects are increasingly common, but little research has evaluated the efficacy of suggested strategies for diversification. We engaged participants in Crowd the Tap through facilitator organizations like historically Black colleges and universities (HBCUs), predominantly white institutions, high school science classrooms, and corporate volunteer programs. Crowd the Tap is a contributory project focused on identifying and addressing lead (Pb) contamination in household drinking water in the United States. We investigated how participant diversity with respects to race, ethnicity, and homeownership (a proxy for income) differed between participation facilitated through a partner organization and unfacilitated participation in which participants came to the project independently. We were also interested in which facilitators were most effective at increasing participant diversity. White and wealthy participants were overrepresented in unfacilitated participation. Facilitation helped increase engagement of people of color, especially Black and lower-income households. High schools were particularly effective at engaging Hispanic or Latinx participants, and HBCUs were important for engaging Black households. Ultimately, our results suggest that engagement through facilitator organizations may be an effective means of engaging diverse participants in large-scale projects. Our results have important implications for the field of participatory science as we seek to identify evidence-based strategies for diversifying project participants.more » « less
-
Indigenous Peoples across the Arctic have adapted to environmental change since time immemorial, yet recent climate change has imposed unprecedented and abrupt changes that affect the land and sea upon which communities rely. Co-created community-based observing programs offer an opportunity to harness the holistic breadth of knowledge in communities with the goal of tracking Arctic change while simultaneously supporting community priorities and local-scale needs. The Alaska Arctic Observatory and Knowledge Hub (AAOKH) is a network of Iñupiaq observers from northern Alaska coastal communities working in partnership with academic researchers. Here, we describe five core functions that have emerged through AAOKH, which include tracking long-term environmental changes; communicating Indigenous-led observations of the environment and their meaning; place-based and culturally relevant education; enabling scientific and Indigenous Knowledge exchange; and supporting community-led responses to environmental change. We outline and discuss specific actions and opportunities that have been used to increase knowledge exchange of AAOKH observations, make space for the next generation of Indigenous scholars, and create locally relevant data products and syntheses that can inform resource management and community planning. We also discuss our ongoing efforts to increasingly shift toward a knowledge coproduction framework as we plan to sustain AAOKH into the future.more » « less
-
Building community with rural and underrepresented groups has been a challenge in the field of citizen science. At the University of Alaska Fairbanks, a team of scientists, educators, Extension professionals, and evaluators have joined efforts to take on this challenge across Alaska. The goals for Arctic Harvest-Public Participation in Scientific Research are to: 1) investigate how shifts in environmental conditions affect the fate of subsistence berries and timing of berry loss from plants in fall and winter across Alaska; and 2) improve the participation in and effectiveness of citizen science across diverse audiences, particularly at high latitudes where a high proportion of communities have populations underrepresented in STEM. We present the assets that collaboration across a land grant university brought to the table, and the Winterberry Citizen Science program design elements we have developed to engage our 1080+ volunteer berry citizen scientists ages three through elder across urban and rural, Indigenous and non-Indigenous, and formal and informal learning settings. Our interdisciplinary team developed and implemented a program that provides in-person or online support for berry monitoring and data collection, and accommodates different age levels and settings. We also developed and tested an innovative program model that weaves storytelling throughout the citizen science learning cycle, from berries stories from the larger community, to stories of the citizen science process, to stories developed from berry data being collected and applied to future scenarios in a changing climate. The variety of program modifications we created have been highly effective helping reach a variety of settings and age levels. In both informal and formal learning environments in our first two years of the program we have had 568 pre-K and elementary-aged (age 3-12), 424 secondary-aged (age 12-18) youth participants and 107 adults (ages 18+), with 44% of participants coming from groups underrepresented in STEM, and 100% of groups completing berry monitoring throughout the fall. These results highlight the importance of designing the citizen science program with cultural relevance, program delivery options, and relationships between participants and scientists, while remaining committed to making a substantial scientific contribution.more » « less
-
Abstract Contributory science—including citizen and community science—allows scientists to leverage participant‐generated data while providing an opportunity for engaging with local community members. Data yielded by participant‐generated biodiversity platforms allow professional scientists to answer ecological and evolutionary questions across both geographic and temporal scales, which is incredibly valuable for conservation efforts.The data reported to contributory biodiversity platforms, such as eBird and iNaturalist, can be driven by social and ecological variables, leading to biased data. Though empirical work has highlighted the biases in contributory data, little work has articulated how biases arise in contributory data and the societal consequences of these biases.We present a conceptual framework illustrating how social and ecological variables create bias in contributory science data. In this framework, we present four filters—participation,detectability,samplingandpreference—that ultimately shape the type and location of contributory biodiversity data. We leverage this framework to examine data from the largest contributory science platforms—eBird and iNaturalist—in St. Louis, Missouri, the United States, and discuss the potential consequences of biased data.Lastly, we conclude by providing several recommendations for researchers and institutions to move towards a more inclusive field. With these recommendations, we provide opportunities to ameliorate biases in contributory data and an opportunity to practice equitable biodiversity conservation. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
An official website of the United States government

