Abstract. Solute concentrations in stream water vary with discharge in patterns that record complex feedbacks between hydrologic and biogeochemical processes. In a comparison of three shale-underlain headwater catchments located in Pennsylvania, USA (the forested Shale Hills Critical Zone Observatory), and Wales, UK (the peatland-dominated Upper Hafren and forest-dominated Upper Hore catchments in the Plynlimon forest), dissimilar concentration–discharge (C–Q) behaviors are best explained by contrasting landscape distributions of soil solution chemistry – especially dissolved organic carbon (DOC) – that have been established by patterns of vegetation and soil organic matter (SOM). Specifically, elements that are concentrated in organic-rich soils due to biotic cycling (Mn, Ca, K) or that form strong complexes with DOC (Fe, Al) are spatially heterogeneous in pore waters because organic matter is heterogeneously distributed across the catchments. These solutes exhibit non-chemostatic behavior in the streams, and solute concentrations either decrease (Shale Hills) or increase (Plynlimon) with increasing discharge. In contrast, solutes that are concentrated in soil minerals and form only weak complexes with DOC (Na, Mg, Si) are spatially homogeneous in pore waters across each catchment. These solutes are chemostatic in that their stream concentrations vary little with stream discharge, likely because these solutes are released quickly frommore »
- Award ID(s):
- 1636476
- Publication Date:
- NSF-PAR ID:
- 10313756
- Journal Name:
- Ecosystems
- ISSN:
- 1432-9840
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Climate change has the potential to impact headwater streams in the Arctic by thawing permafrost and subsequently altering hydrologic regimes and vegetation distribution, physiognomy and productivity. Permafrost thaw and increased subsurface flow have been inferred from the chemistry of large rivers, but there is limited empirical evidence of the impacts to headwater streams. Here we demonstrate how changing vegetation cover and soil thaw may alter headwater catchment hydrology using water budgets, stream discharge trends, and chemistry across a gradient of ground temperature in northwestern Alaska. Colder, tundra-dominated catchments shed precipitation through stream discharge, whereas in warmer catchments with greater forest extent, evapotranspiration (ET) and infiltration are substantial fluxes. Forest soils thaw earlier, remain thawed longer, and display seasonal water content declines, consistent with greater ET and infiltration. Streambed infiltration and water chemistry indicate that even minor warming can lead to increased infiltration and subsurface flow. Additional warming, permafrost loss, and vegetation shifts in the Arctic will deliver water back to the atmosphere and to subsurface aquifers in many regions, with the potential to substantially reduce discharge in headwater streams, if not compensated by increasing precipitation. Decreasing discharge in headwater streams will have important implications for aquatic and riparian ecosystems.
-
Solute concentrations in stream water vary with discharge in patterns that record complex feedbacks between hydrologic and biogeochemical processes. In a comparison of headwater catchments underlain by shale in Pennsylvania, USA (Shale Hills) and Wales, UK (Plynlimon), dissimilar concentration-discharge behaviors are best explained by contrasting landscape distributions of soil solution chemistry – especially dissolved organic carbon (DOC) – that have been established by patterns of vegetation. Specifically, elements that are concentrated in organic-rich soils due to biotic cycling (Mn, Ca, K) or that form strong complexes with DOC (Fe, Al) are spatially heterogeneous in pore waters because organic matter is heterogeneously distributed across the catchments. These solutes exhibit non-chemostatic "bioactive" behavior in the streams, and solute concentrations either decrease (Shale Hills) or increase (Plynlimon) with increasing discharge. In contrast, solutes that are concentrated in soil minerals and form only weak complexes with DOC (Na, Mg, Si) are spatially homogeneous in pore waters across each catchment. These solutes are chemostatic in that their stream concentrations vary little with stream discharge, likely because these solutes are released quickly from exchange sites in the soils during rainfall events. Differences in the hydrologic connectivity of organic-rich soils to the stream drive differences in concentrationmore »
-
Abstract. Ecohydrological models are powerful tools to quantify the effects that independent fluxes may have on catchment storage dynamics. Here, we adapted the tracer-aided ecohydrological model, EcH2O-iso, for cold regions with the explicit conceptualization of dynamic soil freeze–thaw processes. We tested the model at the data-rich Krycklan site in northern Sweden with multi-criterion calibration using discharge, stream isotopes and soil moisture in three nested catchments. We utilized the model's incorporation of ecohydrological partitioning to evaluate the effect of soil frost on evaporation and transpiration water ages, and thereby the age of source waters. The simulation of stream discharge, isotopes, and soil moisture variability captured the seasonal dynamics at all three stream sites and both soil sites, with notable reductions in discharge and soil moisture during the winter months due to the development of the frost front. Stream isotope simulations reproduced the response to the isotopically depleted pulse of spring snowmelt. The soil frost dynamics adequately captured the spatial differences in the freezing front throughout the winter period, despite no direct calibration of soil frost to measured soil temperature. The simulated soil frost indicated a maximum freeze depth of 0.25 m below forest vegetation. Water ages of evaporation and transpiration reflect themore »
-
How does the physical and chemical structure of the Critical Zone (CZ), defined as the zone from treetops to the bottom of groundwater, govern its hydro-biogeochemical functioning? Multiple lines of evidence from past and newly emerging research have prompted the shallow and deep partitioning concentration-discharge (C-Q) hypothesis. The hypothesis states that in-stream C-Q relationships are shaped by distinct source waters from flow paths at different depths. Base flows are often dominated by deep groundwater and mostly reflect groundwater chemistry, whereas high flows are often dominated by shallow soil water and thus mostly reflect soil water chemistry. The contrasts between shallow soil water versus deeper groundwater chemistry shape stream solute export patterns. In this context, the vertical connectivity that regulates the shallow and deep flow partitioning is essential in determining chemical contrasts, biogeochemical reaction rates in soils and parent rocks, and ultimately solute export patterns. This talk will highlight insights gleaned from multiple lines of recent studies that include collation of water chemistry data from soils, rocks, and streams in intensively monitored watersheds, meta-analysis of stream chemistry data at the continental scale, and integrated reactive transport modeling at the hillslope and watershed scales. The hypothesis underscores the importance of subsurface verticalmore »