Isoprene is the most abundant non‐methane volatile organic compound (VOC) emitted globally. Isomeric isoprene hydroxy hydroperoxides (ISOPOOH), key photooxidation products of isoprene, likely comprise the second most abundant class of peroxides in the atmosphere, following hydrogen peroxide. Studies have shown that hydrogen peroxide plays important roles in the formation of inorganic sulfates in cloud water mimics. However, the potential for ISOPOOH to play a role in sulfate formation in wet aerosol oxidation from reduced sulfur species (such as inorganic sulfite) is not well understood. This study systematically investigates the reaction kinetics and products of ISOPOOH reacting with particle phase inorganic sulfite and discusses implications to the sulfate aerosol budget. In order to examine the reaction kinetics of ISOPOOH with aqueous sulfite, ammonium bisulfite particles were injected into the UNC indoor environmental chamber under dark conditions with 70% RH. After the inorganic sulfite concentrations stabilized, selected concentrations of gas‐phase 1,2‐ISOPOOH was injected into the chamber to initiate the multiphase reaction. The gas‐phase ISOPOOH and particle‐phase species were sampled with online instruments, including a chemical ionization mass spectrometer (CIMS), an aerosol chemical speciation monitor (ACSM), and a particle‐into‐liquid sampler (PILS), and also collected by Teflon filters for offline molecularlevel analyses by an ultra‐performance liquid chromatography coupled to an electrospray ionization high resolution quadrupole time‐of‐flight mass spectrometry (UPLC‐ESI‐HR‐QTOFMS). Results show that a significant amount of inorganic sulfite was converted to inorganic sulfate and organosulfates in the particle phase at relatively fast reaction rates, altering the chemical and physical properties of the particles including phase state, pH, reactivity, and composition. Given the high abundance and water solubility of ISOPOOH in the ambient environment, the multiphase reactions examined in our study indicate significant impacts of ISOPOOH on the atmospheric lifecycle of sulfur and the physicochemical properties of ambient particles.
more »
« less
Rapid Formation of Sulfate Aerosols through Aqueous Aerosol Oxidation by Isoprene Hydroxy Hydroperoxides (ISOPOOH).
Isoprene is the most abundant non‐methane volatile organic compound (VOC) emitted globally. Isomeric isoprene hydroxy hydroperoxides (ISOPOOH), key photooxidation products of isoprene, likely comprise the second most abundant class of peroxides in the atmosphere, following hydrogen peroxide. Studies have shown that hydrogen peroxide plays important roles in the formation of inorganic sulfates in cloud water mimics. However, the potential for ISOPOOH to play a role in sulfate formation in wet aerosol oxidation from reduced sulfur species (such as inorganic sulfite) is not well understood. This study systematically investigates the reaction kinetics and products of ISOPOOH reacting with particle phase inorganic sulfite and discusses implications to the sulfate aerosol budget. In order to examine the reaction kinetics of ISOPOOH with aqueous sulfite, ammonium bisulfite particles were injected into the UNC indoor environmental chamber under dark conditions with 70% RH. After the inorganic sulfite concentrations stabilized, selected concentrations of gas‐phase 1,2‐ISOPOOH was injected into the chamber to initiate the multiphase reaction. The gas‐phase ISOPOOH and particle‐phase species were sampled with online instruments, including a chemical ionization mass spectrometer (CIMS), an aerosol chemical speciation monitor (ACSM), and a particle‐into‐liquid sampler (PILS), and also collected by Teflon filters for offline molecular level analyses by an ultra‐performance liquid chromatography coupled to an electrospray ionization high resolution quadrupole time‐of‐flight mass spectrometry (UPLC‐ESI‐HR‐QTOFMS). Results show that a significant amount of inorganic sulfite was converted to inorganic sulfate and organosulfates in the particle phase at relatively fast reaction rates, altering the chemical and physical properties of the particles including phase state, pH, reactivity, and composition. Given the high abundance and water solubility of ISOPOOH in the ambient environment, the multiphase reactions examined in our study indicate significant impacts of ISOPOOH on the atmospheric lifecycle of sulfur and the physicochemical properties of ambient particles.
more »
« less
- Award ID(s):
- 2001027
- PAR ID:
- 10313775
- Date Published:
- Journal Name:
- 38th meeting American Association for Aerosol Research
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Number: 530 Working Group: Aerosol Chemistry Abstract Isoprene is the most abundant non-methane volatile organic compound (VOC) emitted globally. Isomeric isoprene hydroxy hydroperoxides (ISOPOOH), key photooxidation products of isoprene, likely comprise the second most abundant class of peroxides in the atmosphere, following hydrogen peroxide. Studies have shown that hydrogen peroxide plays important roles in the formation of inorganic sulfates in cloud water mimics. However, the potential for ISOPOOH to play a role in sulfate formation in wet aerosol oxidation from reduced sulfur species (such as inorganic sulfite) is not well understood. This study systematically investigates the reaction kinetics and products of ISOPOOH reacting with particle phase inorganic sulfite and discusses implications to the sulfate aerosol budget. In order to examine the reaction kinetics of ISOPOOH with aqueous sulfite, ammonium bisulfite particles were injected into the UNC indoor environmental chamber under dark conditions with 70% RH. After the inorganic sulfite concentrations stabilized, selected concentrations of gas-phase 1,2-ISOPOOH was injected into the chamber to initiate the multiphase reaction. The gas-phase ISOPOOH and particle-phase species were sampled with online instruments, including a chemical ionization mass spectrometer (CIMS), an aerosol chemical speciation monitor (ACSM), and a particle-into-liquid sampler (PILS), and also collected by Teflon filters for offline molecular-level analyses by an ultra-performance liquid chromatography coupled to an electrospray ionization high resolution quadrupole time-of-flight mass spectrometry (UPLC-ESI-HR-QTOFMS). Results show that a significant amount of inorganic sulfite was converted to inorganic sulfate and organosulfates in the particle phase at relatively fast reaction rates, altering the chemical and physical properties of the particles including phase state, pH, reactivity, and composition. Given the high abundance and water solubility of ISOPOOH in the ambient environment, the multiphase reactions examined in our study indicate significant impacts of ISOPOOH on the atmospheric lifecycle of sulfur and the physicochemical properties of ambient particles. Access: https://aaarabstracts.com/2020/viewabstract.php?pid=530more » « less
-
In order to examine the reaction products, kinetics, and implications of ISOPOOH with aqueous sulfite, ammonium bisulfate particles were injected into the UNC 10‐m3 indoor environmental chamber under humid (i.e., 72% RH) and dark conditions. After the inorganic sulfate concentration stabilized, selected concentrations of gas‐phase 1,2‐ISOPOOH were injected into the chamber, and aerosols showed a minimal mass increase. Gaseous SO2 was subsequently injected into the chamber and a significant amount of aerosol mass was produced. The gas‐phase ISOPOOH and particle‐phase species were sampled with online instruments, including a chemical ionization mass spectrometer (CIMS), an aerosol chemical speciation monitor (ACSM), a particle‐into‐liquid sampler (PILS) for analysis by ion chromatography analysis (IC), and filter samples were analyzed by an ultra‐performance liquid chromatography coupled to an electrospray ionization highresolution quadrupole time‐of‐flight mass spectrometry (UPLCESI‐ HR‐QTOFMS) to obtain offline molecular‐level information. Results show that a significant amount of inorganic sulfate and organosulfates were formed rapidly after injecting SO2, altering the chemical and physical properties of the particles including phase state, pH, reactivity, and composition. Multifunctional C5‐organic species that were previously measured in atmospheric fine aerosol samples were also reported here as reaction products, including 2‐methyletrols and 2‐methyltetrol sulfates that were previously thought to be only produced from the reactive uptake of isoprene‐derived epoxydiols (IEPOX). Such results indicate that the multiphase reactions of ISOPOOH could have significant impacts on the atmospheric lifecycle of organic aerosols and sulfur, as well as the physicochemical properties of ambient particles.more » « less
-
Isoprene has a strong effect on the oxidative capacity of the troposphere due to its abundance. Under low-NOx conditions, isoprene oxidizes to form isoprene-derived epoxydiols (IEPOX), contributing significantly to secondary organic aerosol (SOA) through heterogeneous reactions. In particular, organosulfates (OSs) can form from acid-driven reactive uptake of IEPOX onto preexisting particles followed by nucleophilic addition of inorganic sulfate, and they are an important component of SOA mass, primarily in submicron particles with long atmospheric lifetimes. Fundamental understanding of SOA and OS evolution in particles, including the formation of new compounds by oxidation as well as corresponding viscosity changes, is limited, particularly across relative humidity (RH) conditions above and below the deliquescence of typical sulfate aerosol particles. In a 2-m3 indoor chamber held at various RH values (30 – 80%), SOA was generated from reactive uptake of gas-phase IEPOX onto acidic ammonium sulfate aerosols (pH = 0.5 – 2.5) and then aged in an oxidation flow reactor (OFR) for 0 – 24 days of equivalent atmospheric ·OH exposure. We investigated the extent of inorganic sulfate conversion to organosulfate, formation of oligomers, single-particle physicochemical properties, such as viscosity and phase state, and oxidation kinetics. Chemical composition of particle-phase species, as well as aerosol morphological changes, are analyzed as a function of RH, oxidant exposure times, and particle acidity to better understand SOA and OS formation and destruction mechanisms in the ambient atmosphere.more » « less
-
ABSTRACT: Isoprene, the most abundant nonmethane volatile organic compound in the atmosphere, undergoes photochemical reactions with hydroxyl radical (•OH), a major sink for isoprene, leading to the formation of secondary organic aerosol (SOA). Using a Vocus Chemical Ionization Mass Spectrometer with ammonium-adduct ions (Vocus NH4+ CIMS), this study used the positive ion mode to quantify the yields and time-dependent reactiveuptake of oxidized volatile organic compounds (OVOCs) produced from •OH-initiated oxidation of isoprene under dry conditions. Molar gas-phase yields of key oxidation products were constrained using sensitivities derived from a voltage scan of the front and back end of the Vocus ion−molecule reactor region. Carefully designed chamber experiments measured uptake coefficients (γ) for key isoprene-derived oxidation products onto acidic sulfate particles. The γ values for both C5H10O3 isomers (IEPOX/ISOPOOH) and C5H8O4, another epoxy species from isoprene photo-oxidation, rapidly decreased as the SOA coating thickness increased, demonstrating a self-limiting effect. Despite ISOPOOH/IEPOX contributing around 80% to total reactive uptake, other oxidation products from isoprene photooxidation were estimated to contribute 20% of the total SOA formation. These findings highlight the importance for future models to consider the self-limiting effects of ISOPOOH/IEPOX and SOA formation through non-IEPOX pathways.more » « less