skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Observations of Stably Stratified Flow through a Microscale Gap
Abstract This paper reports the findings of a comprehensive field investigation on flow through a mountain gap subject to a range of stably stratified environmental conditions. This study was embedded within the Perdigão field campaign, which was conducted in a region of parallel double-ridge topography with ridge-normal wind climatology. One of the ridges has a well-defined gap (col) at the top, and an array of in situ and remote sensors, including a novel triple Doppler lidar system, was deployed around it. The experimental design was mostly guided by previous numerical and theoretical studies conducted with an idealized configuration where a flow (with characteristic velocity U 0 and buoyancy frequency N ) approaches normal to a mountain of height h with a gap at its crest, for which the governing parameters are the dimensionless mountain height G = Nh / U 0 and various gap aspect ratios. Modified forms of G were proposed to account for real-world atmospheric variability, and the results are discussed in terms of a gap-averaged value G c . The nature of gap flow was highly dependent on G c , wherein a nearly neutral flow regime ( G c < 1), a transitional mountain wave regime [ G c ~ O (1)], and a gap-jetting regime [ G c > O (1)] were identified. The measurements were in broad agreement with previous numerical and theoretical studies on a single ridge with a gap or double-ridge topography, although details vary. This is the first-ever detailed field study reported on microscale [ O (100) m] gap flows, and it provides useful data and insights for future theoretical and numerical studies.  more » « less
Award ID(s):
1921554
PAR ID:
10313845
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
78
Issue:
1
ISSN:
0022-4928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. F or c e d at a f or a fl a p pi n g f oil e n er g y h ar v e st er wit h a cti v e l e a di n g e d g e m oti o n o p er ati n g i n t h e l o w r e d u c e d fr e q u e n c y r a n g e i s c oll e ct e d t o d et er mi n e h o w l e a di n g e d g e m oti o n aff e ct s e n er g y h ar v e sti n g p erf or m a n c e. T h e f oil pi v ot s a b o ut t h e mi dc h or d a n d o p er at e s i n t h e l o w r e d u c e d fr e q u e n c y r a n g e of 𝑓𝑓 𝑓𝑓 / 𝑈𝑈 ∞ = 0. 0 6 , 0. 0 8, a n d 0. 1 0 wit h 𝑅𝑅 𝑅𝑅 = 2 0 ,0 0 0 − 3 0 ,0 0 0 , wit h a pit c hi n g a m plit u d e of 𝜃𝜃 0 = 7 0 ∘ , a n d a h e a vi n g a m plit u d e of ℎ 0 = 0. 5 𝑓𝑓 . It i s f o u n d t h at l e a di n g e d g e m oti o n s t h at r e d u c e t h e eff e cti v e a n gl e of att a c k e arl y t h e str o k e w or k t o b ot h i n cr e a s e t h e lift f or c e s a s w ell a s s hift t h e p e a k lift f or c e l at er i n t h e fl a p pi n g str o k e. L e a di n g e d g e m oti o n s i n w hi c h t h e eff e cti v e a n gl e of att a c k i s i n cr e a s e d e arl y i n t h e str o k e s h o w d e cr e a s e d p erf or m a n c e. I n a d diti o n a di s cr et e v ort e x m o d el wit h v ort e x s h e d di n g at t h e l e a di n g e d g e i s i m pl e m e nt f or t h e m oti o n s st u di e d; it i s f o u n d t h at t h e m e c h a ni s m f or s h e d di n g at t h e l e a di n g e d g e i s n ot a d e q u at e f or t hi s p ar a m et er r a n g e a n d t h e m o d el c o n si st e ntl y o v er pr e di ct s t h e a er o d y n a mi c f or c e s. 
    more » « less
  2. Abstract The radiation of steady surface gravity waves by a uniform stream$$U_{0}$$ U 0 over locally confined (width$$L$$ L ) smooth topography is analyzed based on potential flow theory. The linear solution to this classical problem is readily found by Fourier transforms, and the nonlinear response has been studied extensively by numerical methods. Here, an asymptotic analysis is made for subcritical flow$$D/\lambda > 1$$ D / λ > 1 in the low-Froude-number ($$F^{2} \equiv \lambda /L \ll 1$$ F 2 λ / L 1 ) limit, where$$\lambda = U_{0}^{2} /g$$ λ = U 0 2 / g is the lengthscale of radiating gravity waves and$$D$$ D is the uniform water depth. In this regime, the downstream wave amplitude, although formally exponentially small with respect to$$F$$ F , is determined by a fully nonlinear mechanism even for small topography amplitude. It is argued that this mechanism controls the wave response for a broad range of flow conditions, in contrast to linear theory which has very limited validity. 
    more » « less
  3. Abstract Studies of annual patterns of ecosystem metabolism in rivers have primarily been conducted in temperate ecosystems, and little is known about metabolic regimes of tropical rivers. We estimated ecosystem metabolism in four nonwadeable rivers in southern México that varied in size and the extent of human disturbance. The smaller rivers with limited human disturbance showed reduced gross primary production (GPP; 1.0 and 1.7 g O2m−2 d−1), ecosystem respiration (ER; − 1.9 g O2m−2d−1), and net ecosystem production (NEP) approaching autotrophy (− 0. 8 and − 0.3 g O2m−2d−1) relative to rivers draining larger, more disturbed catchments (GPP, 1.2 and 2.7 g O2m−2d−1; ER, − 5.7 and − 6.9 g O2m−2d−1; NEP, − 3.8 and − 3.7 g O2m−2d−1). In all rivers, GPP and ER varied seasonally with discharge. The smaller rivers exhibited a distinct pattern of greater and sustained GPP during periods of low discharge, a seasonal metabolic regime we describe as “flow decline.” In general, process–discharge relationships exhibited thresholds, with an initial decline in GPP and ER, with increasing discharge and an increase in ER at higher flows. Relative to larger and more disturbed watersheds, smaller rivers showed a more constrained metabolic fingerprint. Annual NEP (− 1033 and − 641 g C m−2 yr−1) in the larger rivers was more negative than the global average, supporting evidence from other studies that tropical rivers are greater contributors to CO2emissions than temperate ecosystems. Our study indicates that hydrological seasonality is a major driver of metabolism in tropical rivers. 
    more » « less
  4. null (Ed.)
    Abstract The origin of the weak insulating behavior of the resistivity, i.e. $${\rho }_{xx}\propto {\mathrm{ln}}\,(1/T)$$ ρ x x ∝ ln ( 1 / T ) , revealed when magnetic fields ( H ) suppress superconductivity in underdoped cuprates has been a longtime mystery. Surprisingly, the high-field behavior of the resistivity observed recently in charge- and spin-stripe-ordered La-214 cuprates suggests a metallic, as opposed to insulating, high-field normal state. Here we report the vanishing of the Hall coefficient in this field-revealed normal state for all $$T\ <\ (2-6){T}_{{\rm{c}}}^{0}$$ T < ( 2 − 6 ) T c 0 , where $${T}_{{\rm{c}}}^{0}$$ T c 0 is the zero-field superconducting transition temperature. Our measurements demonstrate that this is a robust fundamental property of the normal state of cuprates with intertwined orders, exhibited in the previously unexplored regime of T and H . The behavior of the high-field Hall coefficient is fundamentally different from that in other cuprates such as YBa 2 Cu 3 O 6+ x and YBa 2 Cu 4 O 8 , and may imply an approximate particle-hole symmetry that is unique to stripe-ordered cuprates. Our results highlight the important role of the competing orders in determining the normal state of cuprates. 
    more » « less
  5. Abstract Linear theory has long been used to study mountain waves and has been successful in describing much of their behaviour. In the simplest theoretical context, that of two‐dimensional steady‐state flow with constant Brunt–Väisälä frequency (N) and horizontal wind speed (U), finite‐amplitude effects are relatively minor until wave breaking occurs. However, in more complex environmental profiles, significant finite‐amplitude effects occur below the wave‐breaking threshold. We constructed a linearized version of a fully nonlinear time‐dependent model, thereby facilitating direct comparisons between linear and finite‐amplitude solutions in cases with upstream profiles representative of typical real‐world events. Beginning with the simplest profile that includes a tropopause, namely an environment with constant upstream wind speed and two layers of constant static stability, we progressively investigate more complex profiles that include vertical wind shear typical of the midlatitude westerlies. Our results demonstrate that, even without wave breaking, finite‐amplitude effects can play an important role in modulating the mountain‐wave amplitude and gravity‐wave drag. The modulation is a function of the tropopause height and is most pronounced when the cross‐ridge flow increases strongly with height. 
    more » « less