skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evolutionarily diverse LIM domain-containing proteins bind stressed actin filaments through a conserved mechanism
The actin cytoskeleton assembles into diverse load-bearing networks, including stress fibers (SFs), muscle sarcomeres, and the cytokinetic ring to both generate and sense mechanical forces. The LIM (Lin11, Isl- 1, and Mec-3) domain family is functionally diverse, but most members can associate with the actin cytoskeleton with apparent force sensitivity. Zyxin rapidly localizes via its LIM domains to failing SFs in cells, known as strain sites, to initiate SF repair and maintain mechanical homeostasis. The mechanism by which these LIM domains associate with stress fiber strain sites (SFSS) is not known. Additionally, it is unknown how widespread strain sensing is within the LIM protein family. We identify that the LIM domain-containing region of 18 proteins from the Zyxin, Paxillin, Tes, and Enigma proteins accumulate to SFSS. Moreover, the LIM domain region from the fission yeast protein paxillin like 1 (Pxl1) also localizes to SFSS in mammalian cells, suggesting that the strain sensing mechanism is ancient and highly conserved. We then used sequence and domain analysis to demonstrate that tandem LIM domains contribute additively, for SFSS localization. Employing in vitro reconstitution, we show that the LIM domain-containing region from mammalian zyxin and fission yeast Pxl1 binds to mechanically stressed F-actin networks but does not associate with relaxed actin filaments. We propose that tandem LIM domains recognize an F-actin conformation that is rare in the relaxed state but is enriched in the presence of mechanical stress.  more » « less
Award ID(s):
2011854
PAR ID:
10313849
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
41
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dunn, Alex (Ed.)
    The actin cytoskeleton is a key regulator of mechanical processes in cells. The family of LIM domain proteins have recently emerged as important mechanoresponsive cytoskeletal elements capable of sensing strain in the actin cytoskeleton. The mechanisms regulating this mechanosensitive behavior, however, remain poorly understood. Here we show that the LIM domain protein testin is peculiar in that despite the full-length protein primarily appearing diffuse in the cytoplasm, the C-terminal LIM domains alone recognize focal adhesions and strained actin, while the N-terminal domains alone recognize stress fibers. Phosphorylation mutations in the dimerization regions of testin, however, reveal its mechanosensitivity and cause it to relocate to focal adhesions and sites of strain in the actin cytoskeleton. Finally, we demonstrate that activated RhoA causes testin to adorn stress fibers and become mechanosensitive. Together, our data show that testin’s mechanoresponse is regulated in cells and provide new insights into LIM domain protein recognition of the actin cytoskeleton’s mechanical state. 
    more » « less
  2. Abstract The actin cytoskeleton is important for maintaining mechanical homeostasis in adherent cells, largely through its regulation of adhesion and cortical tension. The LIM (Lin‐11,Isl1,MEC‐3) domain‐containing proteins are involved in a myriad of cellular mechanosensitive pathways. Recent work has discovered that LIM domains bind to mechanically stressed actin filaments, suggesting a novel and widely conserved mechanism of mechanosensing. This review summarizes the current state of knowledge of LIM protein mechanosensitivity. 
    more » « less
  3. Local substrate stiffness is one of the major mechanical inputs for tissue organization during its development and remodeling. It is widely recognized that adherent cells use transmembrane proteins (integrins) at focal adhesions to translate ECM mechanical cues into intracellular bioprocess. Here we show that epithelial cells respond to substrate stiffening primarily via actin cytoskeleton organization, that requires activation of mechanosensitive Piezo1 channels. Piezo1 Knockdown cells eliminated the actin stress fibers that formed on stiff substrates, while it had minimal effect on cell morphology and spreading area. Inhibition of Piezo1 channels with GsMTx4 also significantly reduced stiffness-induced F-actin reorganization, suggesting Piezo1 mediated cation current plays a role. Activation of Piezo1 channels with specific agonist (Yoda1) resulted in thickening of F-actin fibers and enlargement of FAs on stiffer substrates, whereas it did not affect the formation of nascent FAs that facilitate spreading on the soft substrates. These results demonstrate that Piezo1 functions as a force sensor that couples with actin cytoskeleton to distinguish the substrate stiffness and facilitate epithelial adaptive remodeling. 
    more » « less
  4. Cytoskeleton morphology plays a key role in regulating cell mechanics. Particularly, cellular mechanical properties are directly regulated by the highly cross-linked and dynamic cytoskeletal structure of F-actin and microtubules presented in the cytoplasm. Although great efforts have been devoted to investigating the qualitative relation between the cellular cytoskeleton state and cell mechanical properties, comprehensive quantification results of how the states of F-actin and microtubules affect mechanical behavior are still lacking. In this study, the effect of both F-actin and microtubules morphology on cellular mechanical properties was quantified using atomic force microscope indentation experiments together with the proposed image recognition-based cytoskeleton quantification approach. Young’s modulus and diffusion coefficient of NIH/3T3 cells with different cytoskeleton states were quantified at different length scales. It was found that the living NIH/3T3 cells sense and adapt to the F-actin and microtubules states: both the cellular elasticity and poroelasticity are closely correlated to the depolymerization degree of F-actin and microtubules at all measured indentation depths. Moreover, the significance of the quantitative effects of F-actin and microtubules in affecting cellular mechanical behavior is depth-dependent. 
    more » « less
  5. null (Ed.)
    The telomere protein assemblies in different fungal lineages manifest quite profound structural and functional divergence, implying a high degree of flexibility and adaptability. Previous comparative analyses of fungal telomeres have focused on the role of telomere sequence alterations in promoting the evolution of corresponding proteins, particularly in budding and fission yeast. However, emerging evidence suggests that even in fungi with the canonical 6-bp telomere repeat unit, there are significant remodeling of the telomere assembly. Indeed, a new protein family can be recruited to serve dedicated telomere functions, and then experience subsequent loss in sub-branches of the clade. An especially interesting example is the Tay1 family of proteins, which emerged in fungi prior to the divergence of basidiomycetes from ascomycetes. This relatively recent protein family appears to have acquired its telomere DNA-binding activity through the modification of another Myb-containing protein. Members of the Tay1 family evidently underwent rather dramatic functional diversification, serving, e.g., as transcription factors in fission yeast while acting to promote telomere maintenance in basidiomycetes and some hemi-ascomycetes. Remarkably, despite its distinct structural organization and evolutionary origin, a basidiomycete Tay1 appears to promote telomere replication using the same mechanism as mammalian TRF1, i.e., by recruiting and regulating Blm helicase activity. This apparent example of convergent evolution at the molecular level highlight the ability of telomere proteins to acquire new interaction targets. The remarkable evolutionary history of Tay1 illustrates the power of protein modularity and the facile acquisition of nucleic acid/protein-binding activity to promote telomere flexibility. 
    more » « less