We introduce Flux, which shows how logical refinements can work hand in glove with Rust's ownership mechanisms to yield ergonomic type-based verification of low-level pointer manipulating programs. First, we design a novel refined type system for Rust that indexes mutable locations, with pure (immutable) values that can appear in refinements, and then exploits Rust's ownership mechanisms to abstract sub-structural reasoning about locations within Rust's polymorphic type constructors, while supporting strong updates. We formalize the crucial dependency upon Rust's strong aliasing guarantees by exploiting the Stacked Borrows aliasing model to prove that "well-borrowed evaluations of well-typed programs do not get stuck". Second, we implement our type system in Flux, a plug-in to the Rust compiler that exploits the factoring of complex invariants into types and refinements to efficiently synthesize loop annotations-including complex quantified invariants describing the contents of containers-via liquid inference. Third, we evaluate Flux with a benchmark suite of vector manipulating programs and parts of a previously verified secure sandboxing library to demonstrate the advantages of refinement types over program logics as implemented in the state-of-the-art Prusti verifier. While Prusti's more expressive program logic can, in general, verify deep functional correctness specifications, for the lightweight but ubiquitous and important verification use-cases covered by our benchmarks, liquid typing makes verification ergonomic by slashing specification lines by a factor of two, verification time by an order of magnitude, and annotation overhead from up to 24% of code size (average 14%), to nothing at all.
more »
« less
Data flow refinement type inference
Refinement types enable lightweight verification of functional programs. Algorithms for statically inferring refinement types typically work by reduction to solving systems of constrained Horn clauses extracted from typing derivations. An example is Liquid type inference, which solves the extracted constraints using predicate abstraction. However, the reduction to constraint solving in itself already signifies an abstraction of the program semantics that affects the precision of the overall static analysis. To better understand this issue, we study the type inference problem in its entirety through the lens of abstract interpretation. We propose a new refinement type system that is parametric with the choice of the abstract domain of type refinements as well as the degree to which it tracks context-sensitive control flow information. We then derive an accompanying parametric inference algorithm as an abstract interpretation of a novel data flow semantics of functional programs. We further show that the type system is sound and complete with respect to the constructed abstract semantics. Our theoretical development reveals the key abstraction steps inherent in refinement type inference algorithms. The trade-off between precision and efficiency of these abstraction steps is controlled by the parameters of the type system. Existing refinement type systems and their respective inference algorithms, such as Liquid types, are captured by concrete parameter instantiations. We have implemented our framework in a prototype tool and evaluated it for a range of new parameter instantiations (e.g., using octagons and polyhedra for expressing type refinements). The tool compares favorably against other existing tools. Our evaluation indicates that our approach can be used to systematically construct new refinement type inference algorithms that are both robust and precise.
more »
« less
- Award ID(s):
- 1815633
- PAR ID:
- 10313851
- Date Published:
- Journal Name:
- Proceedings of the ACM on Programming Languages
- Volume:
- 5
- Issue:
- POPL
- ISSN:
- 2475-1421
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)This article presents liquid resource types, a technique for automatically verifying the resource consumption of functional programs. Existing resource analysis techniques trade automation for flexibility – automated techniques are restricted to relatively constrained families of resource bounds, while more expressive proof techniques admitting value-dependent bounds rely on handwritten proofs. Liquid resource types combine the best of these approaches, using logical refinements to automatically prove precise bounds on a program’s resource consumption. The type system augments refinement types with potential annotations to conduct an amortized resource analysis. Importantly, users can annotate data structure declarations to indicate how potential is allocated within the type, allowing the system to express bounds with polynomials and exponentials, as well as more precise expressions depending on program values. We prove the soundness of the type system, provide a library of flexible and reusable data structures for conducting resource analysis, and use our prototype implementation to automatically verify resource bounds that previously required a manual proof.more » « less
-
This article presents liquid resource types, a technique for automatically verifying the resource consumption of functional programs. Existing resource analysis techniques trade automation for flexibility -- automated techniques are restricted to relatively constrained families of resource bounds, while more expressive proof techniques admitting value-dependent bounds rely on handwritten proofs. Liquid resource types combine the best of these approaches, using logical refinements to automatically prove precise bounds on a program's resource consumption. The type system augments refinement types with potential annotations to conduct an amortized resource analysis. Importantly, users can annotate data structure declarations to indicate how potential is allocated within the type, allowing the system to express bounds with polynomials and exponentials, as well as more precise expressions depending on program values. We prove the soundness of the type system, provide a library of flexible and reusable data structures for conducting resource analysis, and use our prototype implementation to automatically verify resource bounds that previously required a manual proof.more » « less
-
This article presents a type-based analysis for deriving upper bounds on the expected execution cost of probabilistic programs. The analysis is naturally compositional, parametric in the cost model, and supports higher-order functions and inductive data types. The derived bounds are multivariate polynomials that are functions of data structures. Bound inference is enabled by local type rules that reduce type inference to linear constraint solving. The type system is based on the potential method of amortized analysis and extends automatic amortized resource analysis (AARA) for deterministic programs. A main innovation is that bounds can contain symbolic probabilities, which may appear in data structures and function arguments. Another contribution is a novel soundness proof that establishes the correctness of the derived bounds with respect to a distribution-based operational cost semantics that also includes nontrivial diverging behavior. For cost models like time, derived bounds imply termination with probability one. To highlight the novel ideas, the presentation focuses on linear potential and a core language. However, the analysis is implemented as an extension of Resource Aware ML and supports polynomial bounds and user defined data structures. The effectiveness of the technique is evaluated by analyzing the sample complexity of discrete distributions and with a novel average-case estimation for deterministic programs that combines expected cost analysis with statistical methods.more » « less
-
This paper considers parametricity and its consequent free theorems for nested data types. Rather than representing nested types via their Church encodings in a higher-kinded or dependently typed extension of System F, we adopt a functional programming perspective and design a Hindley-Milner-style calculus with primitives for constructing nested types directly as fixpoints. Our calculus can express all nested types appearing in the literature, including truly nested types. At the level of terms, it supports primitive pattern matching, map functions, and fold combinators for nested types. Our main contribution is the construction of a parametric model for our calculus. This is both delicate andchallenging. In particular, to ensure the existence of semantic fixpoints interpreting nested types, and thus to establish a suitable Identity Extension Lemma for our calculus, our type system must explicitly track functoriality of types, and cocontinuity conditions on the functors interpreting them must be appropriately threaded throughout the model construction. We also prove that our model satisfies an appropriate Abstraction Theorem, as well as that it verifies all standard consequences of parametricity in the presence of primitive nested types. We give several concrete examples illustrating how our model can be used to derive useful free theorems, including a short cut fusion transformation, for programs over nested types. Finally, we consider generalizing our results to GADTs, and argue that no extension of our parametric model for nested types can give a functorial interpretation of GADTs in terms of left Kan extensions and still be parametric.more » « less