skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Categorical symmetry and noninvertible anomaly in symmetry-breaking and topological phase transitions
Award ID(s):
1664412
PAR ID:
10313929
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Physical Review Research
Volume:
2
Issue:
3
ISSN:
2643-1564
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Ginzburg-Landau (GL) theory is very successful in describing the pairing symmetry, a fundamental characterization of the broken symmetries in a paired superfluid or superconductor. However, GL theory does not describe fermionic excitations such as Bogoliubov quasiparticles or Andreev bound states that are directly related to topological properties of the superconductor. In this work, we show that the symmetries of the fermionic excitations are captured by a Projective Symmetry Group (PSG), which is a group extension of the bosonic symmetry group in the superconducting state. We further establish a correspondence between the pairing symmetry and the fermion PSG. When the normal and superconducting states share the same spin rotational symmetry, there is a simpler correspondence between the pairing symmetry and the fermion PSG, which we enumerate for all 32 crystalline point groups. We also discuss the general framework for computing PSGs when the spin rotational symmetry is spontaneously broken in the superconducting state. This PSG formalism leads to experimental consequences, and as an example, we show how a given pairing symmetry dictates the classification of topological superconductivity. 
    more » « less
  2. A characteristic property of a gapless liquid state is its emergent symmetry and dual symmetry, associated with the conservation laws of symmetry charges and symmetry defects respectively. These conservation laws, considered on an equal footing, can't be described simply by the representation theory of a group (or a higher group). They are best described in terms of {\it a topological order (TO) with gappable boundary in one higher dimension}; we call this the {\it symTO} of the gapless state. The symTO can thus be considered a fingerprint of the gapless state. We propose that a largely complete characterization of a gapless state, up to local-low-energy equivalence, can be obtained in terms of its {\it maximal} emergent symTO. In this paper, we review the symmetry/topological-order (Symm/TO) correspondence and propose a definition of {\it maximal symTO}. We discuss various examples to illustrate these ideas. We find that the 1+1D Ising critical point has a maximal symTO described by the 2+1D double-Ising topological order. We provide a derivation of this result using symmetry twists in an exactly solvable model of the Ising critical point. The critical point in the 3-state Potts model has a maximal symTO of double (6,5)-minimal-model topological order. As an example of a noninvertible symmetry in 1+1D, we study the possible gapless states of a Fibonacci anyon chain with emergent double-Fibonacci symTO. We find the Fibonacci-anyon chain without translation symmetry has a critical point with unbroken double-Fibonacci symTO. In fact, such a critical theory has a maximal symTO of double (5,4)-minimal-model topological order. We argue that, in the presence of translation symmetry, the above critical point becomes a stable gapless phase with no symmetric relevant operator. 
    more » « less