skip to main content


Title: Notes on the genus Syntrichia with a revised infrageneric classification and the recognition of a new genus Syntrichiadelphus (Bryophyta, Pottiaceae)
A revised infrageneric classification of the genus Syntrichia Brid. is proposed that includes the segregation of a new genus Syntrichiadelphus for the species currently known as Syntrichia flagellaris (Schimp.) R.H. Zander. In addition, a synopsis of Syntrichia for Madagascar is presented with new synonymy, lectotypifications, and Syntrichia ammonsiana (H.A. Crum & L.E. Anderson) Ochyra newly reported from the island. Published online www.phytologia.org Phytologia 103(4): 90-103 (December 22, 2021). ISSN 030319430.  more » « less
Award ID(s):
1638956
NSF-PAR ID:
10313958
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Phytologia
Volume:
103
Issue:
4
ISSN:
0031-9430
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A new avian chewing louse genus Apomyrsidea gen. nov. is described based on species parasitizing birds in the family Formicariidae. Diagnostic characteristics and phylogenetic analyses were used to evaluate and confirm the generic status and merit its recognition as unique and different from Myrsidea Waterston, 1915. Three species previously belonging to the genus Myrsidea are placed in the new genus Apomyrsidea gen. nov. and are discussed: Apomyrsidea circumsternata (Valim & Weckstein, 2013) gen. et comb. nov., Apomyrsidea isacantha (Valim & Weckstein, 2013) gen. et comb. nov. and Apomyrsidea klimesi (Sychra in Sychra et al., 2006) gen. et comb. nov. 
    more » « less
  2. Amylascusis a genus of ectomycorrhizal truffles withinPezizaceaethat is known from Australia and contains only two described species,A. herbertianusandA. tasmanicus. Species ofAmylascusare closely related to truffles (Pachyphlodes,Luteoamylascus) and cup fungi (Plicariella) from the Northern Hemisphere. Here we reevaluate the species diversity ofAmylascusand related taxa from southern South America and Australia based on new morphological and molecular data. We identify previously undocumented diversity and morphological variability in ascospore color, ascospore ornamentation, hymenial construction, epithecium structure and the amyloid reaction of the ascus in Melzer’s reagent. We redescribe twoAmylascusspecies from Australia and describe seven newAmylascusspecies, five from South America and two from Australia. This is the first report ofAmylascusspecies from South America. We also describe the new South American genusNothoamylascusas sister lineage to thePachyphlodes-Amylascus-Luteoamylascusclade (includingAmylascus,Luteoamylascus,Pachyphlodes, andPlicariella). We obtained ITS sequences of mitotic spore mats fromNothoamylascus erubescensgen. & sp. nov. and four of the seven newly describedAmylascusspecies, providing the first evidence of mitotic spore mats inAmylascus. Additional ITS sequences from mitotic spore mats reveal the presence of nine additional undescribedAmylascusand oneNothoamylascusspecies that do not correspond to any sampled ascomata. We also identify three additional undescribedAmylascusspecies based on environmental sequences from the feces of two ground-dwelling bird species from Chile,Scelorchilus rubeculaandPteroptochos tarnii. Our results indicate that ascomata fromAmylascusandNothoamylascusspecies are rarely collected, but molecular data from ectomycorrhizal roots and mitotic spore mats indicate that these species are probably common and widespread in southern South America. Finally, we present a time-calibrated phylogeny that is consistent with a late Gondwanan distribution. The time since the most recent common ancestor of: 1) the familyPezizaceaehad a mean of 276 Ma (217–337 HPD); 2) theAmylascus-Pachyphlodes-Nothoamylascus-Luteoamylascusclade had a mean of 79 Ma (60–100 HPD); and 3) theAmylascus-Pachyphlodesclade had a mean of 50 Ma (38–62 HPD). The crown age ofPachyphlodeshad a mean of 39 Ma (25–42 HPD) andAmylascushad a mean age of 28 Ma (20–37 HPD), falling near the Eocene-Oligocene boundary and the onset of the Antarctic glaciation (c. 35 Ma).

     
    more » « less
  3. Public health agencies routinely collect time-referenced records to describe and compare foodborne outbreak characteristics. Few studies provide comprehensive metadata to inform researchers of data limitations prior to conducting statistical modeling. We described the completeness of 103 variables for 22,792 outbreaks publicly reported by the United States Centers for Disease Control and Prevention’s (US CDC’s) electronic Foodborne Outbreak Reporting System (eFORS) and National Outbreak Reporting System (NORS). We compared monthly trends of completeness during eFORS (1998–2008) and NORS (2009–2019) reporting periods using segmented time series analyses adjusted for seasonality. We quantified the overall, annual, and monthly completeness as the percentage of outbreaks with blank records per our study period, calendar year, and study month, respectively. We found that outbreaks of unknown genus (n = 7401), Norovirus (n = 6414), Salmonella (n = 2872), Clostridium (n = 944), and multiple genera (n = 779) accounted for 80.77% of all outbreaks. However, crude completeness ranged from 46.06% to 60.19% across the 103 variables assessed. Variables with the lowest crude completeness (ranging 3.32–6.98%) included pathogen, specimen etiological testing, and secondary transmission traceback information. Variables with low (<35%) average monthly completeness during eFORS increased by 0.33–0.40%/month after transitioning to NORS, most likely due to the expansion of surveillance capacity and coverage within the new reporting system. Examining completeness metrics in outbreak surveillance systems provides essential information on the availability of data for public reuse. These metadata offer important insights for public health statisticians and modelers to precisely monitor and track the geographic spread, event duration, and illness intensity of foodborne outbreaks. 
    more » « less
  4. null (Ed.)
    For the first time in 21 years, a new genus of cardiochiline braconid wasp, Orientocardiochiles Kang & Long, gen. nov. (type species Orientocardiochiles joeburrowi Kang, sp. nov. ), is discovered and described. This genus represents the ninth genus in the Oriental region. Two new species ( O. joeburrowi Kang, sp. nov. and O. nigrofasciatus Long, sp. nov. ) are described and illustrated, and a key to species of the genus, with detailed images, is added. Diagnostic characters of the new genus are analyzed and compared with several other cardiochiline genera to allow the genus to key out properly using an existing generic treatment. The scientific names validated by this paper and morphological data obtained from this project will be utilized and tested in the upcoming genus-level revision of the subfamily based on combined morphological and molecular data. 
    more » « less
  5. null (Ed.)
    Haraldiophyllum hawaiiense sp. nov. is described as a new mesophotic alga and a new genus record for the Hawaiian Islands. Six specimens were collected at a depth range of 81-93 m from Papahānaumokuākea Marine National Monument, and their morphology investigated, as well as molecular phylogenetic analyses of the plastidial ribulose-1,5- bisphosphate carboxylase–oxygenase large-subunit (rbcL) gene and a concatenated alignment of rbcL and nuclear large-subunit rRNA gene (LSU) sequences. Phylogenetic analyses supported H. hawaiiense sp. nov. as a distinct lineage within the genus Haraldiophyllum, and sister to a large clade containing the type species, H. bonnemaisonii, as well as H. crispatum and an undescribed European specimen. The six Hawaiian specimens were shown to be identical, but unique among other species of the genus as well as the recently segregated genus Neoharaldiophyllum, which comprises half of the species previously included in Haraldiophyllum. The vegetative morphology of H. hawaiiense sp. nov. resembles Neoharaldiophyllum udoense (formerly H. udoensis); however, no female or post-fertilization structures were found in the Hawaiian specimens to allow a more comprehensive comparison. The molecular phylogenies demonstrate that Haraldiophyllum is paraphyletic, suggesting either that the Myriogrammeae tribe includes undescribed genera, including Haraldiophyllum sensu stricto, or that Neoharaldiophyllum species should be transferred into the genus Haraldiophyllum. However, based on vegetative morphology and molecular analyses, and pending resolution of this taxonomic issue, the Hawaiian specimens are placed within the genus Haraldiophyllum. This new record for the Hawaiian Islands highlights the novel biodiversity from mesophotic depths, reaffirming the need for further investigation into the biodiversity of Mesophotic Coral Ecosystems. 
    more » « less