skip to main content


Title: Re-examination of the Southern Hemisphere truffle genus Amylascus (Pezizaceae, Ascomycota) and characterization of the sister genus Nothoamylascus gen. nov.

Amylascusis a genus of ectomycorrhizal truffles withinPezizaceaethat is known from Australia and contains only two described species,A. herbertianusandA. tasmanicus. Species ofAmylascusare closely related to truffles (Pachyphlodes,Luteoamylascus) and cup fungi (Plicariella) from the Northern Hemisphere. Here we reevaluate the species diversity ofAmylascusand related taxa from southern South America and Australia based on new morphological and molecular data. We identify previously undocumented diversity and morphological variability in ascospore color, ascospore ornamentation, hymenial construction, epithecium structure and the amyloid reaction of the ascus in Melzer’s reagent. We redescribe twoAmylascusspecies from Australia and describe seven newAmylascusspecies, five from South America and two from Australia. This is the first report ofAmylascusspecies from South America. We also describe the new South American genusNothoamylascusas sister lineage to thePachyphlodes-Amylascus-Luteoamylascusclade (includingAmylascus,Luteoamylascus,Pachyphlodes, andPlicariella). We obtained ITS sequences of mitotic spore mats fromNothoamylascus erubescensgen. & sp. nov. and four of the seven newly describedAmylascusspecies, providing the first evidence of mitotic spore mats inAmylascus. Additional ITS sequences from mitotic spore mats reveal the presence of nine additional undescribedAmylascusand oneNothoamylascusspecies that do not correspond to any sampled ascomata. We also identify three additional undescribedAmylascusspecies based on environmental sequences from the feces of two ground-dwelling bird species from Chile,Scelorchilus rubeculaandPteroptochos tarnii. Our results indicate that ascomata fromAmylascusandNothoamylascusspecies are rarely collected, but molecular data from ectomycorrhizal roots and mitotic spore mats indicate that these species are probably common and widespread in southern South America. Finally, we present a time-calibrated phylogeny that is consistent with a late Gondwanan distribution. The time since the most recent common ancestor of: 1) the familyPezizaceaehad a mean of 276 Ma (217–337 HPD); 2) theAmylascus-Pachyphlodes-Nothoamylascus-Luteoamylascusclade had a mean of 79 Ma (60–100 HPD); and 3) theAmylascus-Pachyphlodesclade had a mean of 50 Ma (38–62 HPD). The crown age ofPachyphlodeshad a mean of 39 Ma (25–42 HPD) andAmylascushad a mean age of 28 Ma (20–37 HPD), falling near the Eocene-Oligocene boundary and the onset of the Antarctic glaciation (c. 35 Ma).

 
more » « less
Award ID(s):
1946445
NSF-PAR ID:
10486746
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Persoonia - Molecular Phylogeny and Evolution of Fungi
Date Published:
Journal Name:
Persoonia - Molecular Phylogeny and Evolution of Fungi
ISSN:
0031-5850
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Andreas Schmidt-Rhaesa (Ed.)

    The marine ribbon worm genusTetranemertesChernyshev, 1992 currently includes three species: the type speciesT. antonina(Quatrefages, 1846) from the Mediterranean Sea,T. rubrolineata(Kirsteuer, 1965) from Madagascar, andT. hermaphroditica(Gibson, 1982) from Australia. Seven new species are described:T. bifrostsp. nov.,T. ocelatasp. nov.,T. majinbuuisp. nov., andT. pastafariensissp. nov.from the Caribbean Sea (Panamá), and three species,T. unistriatasp. nov.,T. paulayisp. nov., andT. arabicasp. nov., from the Indo-West Pacific (Japan and Oman). As a result, an amended morphological diagnosis of the genus is offered. To improve nomenclatural stability, a neotype ofTetranemertes antoninais designated from the Mediterranean. The newly described species, each characterized by features of external appearance and stylet apparatus, as well as by DNA-barcodes, form a well-supported clade withT. antoninaon a molecular phylogeny of monostiliferan hoplonemerteans based on partial sequences of COI, 16S rRNA, 18S rRNA, and 28S rRNA. Six of the seven newly described species, as well asT. rubrolineata, possess the unusual character of having a central stylet basis slightly bilobed to deeply forked posteriorly in fully grown individuals, a possible morphological synapomorphy of the genus. In addition, an undescribed species ofTetranemertesis reported from the Eastern Tropical Pacific (Panamá), increasing the total number of known species in the genus to eleven.

     
    more » « less
  2. Sharma, Prashant (Ed.)

    Pettalidae is a family of mite harvestmen that inhabits the former circum-Antarctic Gondwanan terranes, including southern South America, South Africa, Madagascar, Sri Lanka, Australia and New Zealand. Australia is home to two pettalid genera, Austropurcellia, in northern New South Wales and Queensland, and Karripurcellia, in Western Australia, until now showing a large distributional gap between these two parts of the Australian continent. Here we report specimens of a new pettalid from South Australia, Archaeopurcellia eureka, gen. et sp. nov., closing this distributional gap of Australian pettalids. Phylogenetic analyses using traditional Sanger markers as well as ultra-conserved elements (UCEs) reveal that the new genus is related to the Chilean Chileogovea, instead of any of the other East Gondwanan genera. This relationship of an Australian species to a South American clade can be explained by the Antarctic land bridge between these two terranes, a connection that was maintained with Australia until 45 Ma. The UCE dataset also shows the promise of using museum specimens to resolve relationships within Pettalidae and Cyphophthalmi. ZooBank: urn:lsid:zoobank.org:pub:9B57A054-30D8-4412-99A2-6191CBD3BD7E

     
    more » « less
  3. Abstract

    The fish genusPoeciliopsisconstitutes a valuable research system for evolutionary ecology, whose phylogenetic relationships have not been fully elucidated. We conducted a multilocus phylogenetic study of the genus based on seven nuclear and two mitochondrial loci with a thorough set of analytical approaches, that is, concatenated (also known as super‐matrix), species trees, and phylogenetic networks. Although several relationships remain unresolved, the overall results uncovered phylogenetic affinities among several members of this genus.A population previously considered of undetermined taxonomic status could be unequivocally assigned toP. scarlli; revealing a relatively recent dispersal event across the Trans‐Mexican Volcanic Belt (TMVB) or Pacific Ocean, which constitute a strong barrier to north–south dispersal of many terrestrial and freshwater taxa. The closest relatives ofP. balsas, a species distributed south of the TMVB, are distributed in the north; representing an additional north–south split in the genus. An undescribed species ofPoeciliopsis, with a highly restricted distribution (i.e., a short stretch of the Rio Concepcion; just south of the US‐Mexico border), falls within theLeptorhaphisspecies complex. Our results are inconsistent with the hypothesis that this species originated by “breakdown” of an asexual hybrid lineage. On the other hand, network analyses suggest one or more possible cases of reticulation within the genus that require further evaluation with genome‐wide marker representation and additional analytical tools. The most strongly supported case of reticulation occurred within the subgenusAulophallus(restricted to Central America), and implies a hybrid origin forP. retropinna(i.e., betweenP. paucimaculataandP. elongata). We consider thatP. balsasandP.new species are of conservation concern.

     
    more » « less
  4. Abstract

    The Cyathocotylidae is a globally distributed family of digeneans parasitic as adults in fish, reptiles, birds and mammals in both freshwater and marine environments. Molecular phylogenetic analysis of interrelationships among cyathocotylids is lacking with only a few species included in previous studies. We used sequences of the nuclear 28S rRNA gene to examine phylogenetic affinities of 11 newly sequenced taxa of cyathocotylids and the closely related family Brauninidae collected from fish, reptiles, birds and dolphins from Australia, Southeast Asia, Europe, North America and South America. This is the first study to provide sequence data from adult cyathocotylids parasitic in fish and reptiles. Our analyses demonstrated that the members of the genusBraunina(family Brauninidae) belong to the Cyathocotylidae, placing the Brauninidae into synonymy with the Cyathocotylidae. In addition, our DNA sequences supported the presence of a second species in the currently monotypicBraunina. Our phylogeny revealed thatCyathocotylespp. from crocodilians belong to a separate genus (Suchocyathocotyle, previously proposed as a subgenus) and subfamily (Suchocyathocotylinae subfam. n.). Morphological study ofGogatea serpentum indicumsupported its elevation to species asGogatea mehri. The phylogeny did not supportHolostephanoideswithin the subfamily Cyathocotylinae; instead,Holostephanoidesformed a strongly supported clade with members of the subfamily Szidatiinae (GogateaandNeogogatea). Therefore, we transferHolostephanoidesinto the Szidatiinae. DNA sequence data revealed the potential presence of cryptic species reported under the nameMesostephanus microbursa. Our phylogeny indicated at least two major host switching events in the evolutionary history of the subfamily Szidatiinae which likely resulted in the transition of these parasites from birds to fish and snakes. Likewise, the transition to dolphins byBrauninarepresents another major host switching event among the Cyathocotylidae. In addition, our phylogeny revealed more than a single transition between freshwater and marine environments demonstrated in our dataset byBrauninaand someMesostephanus.

     
    more » « less
  5. Abstract Aim

    Fossil data may be crucial to infer biogeographical history, especially in taxa with tropical trans‐Pacific distributions. Here, we use extinct and extant trochanteriid flattened spiders to test hypotheses that could explain its trans‐Pacific disjunct distribution, including a Boreotropical origin with a North Atlantic dispersal, an African origin with South Atlantic dispersal and an Eurasian origin with Bering Bridge route.

    Location

    World‐wide.

    Taxon

    Trochanteriidae,PlatorDoliomalusVectius(PDV) clade.

    Methods

    MicroCT was used to collect morphological data from an undescribed Baltic amber fossil. These data were used with additional fossils and extant species in a total‐evidence, tip‐dated phylogenetic analysis. We tested different scenarios using constrained dispersal matrices in a Bayesian approach. An analysis with fossils pruned was also performed to explore how lack of fossil data might impact inferences of biogeographical process.

    Results

    The phylogenetic analyses allowed us to place the new fossil in the genusPlator. Analyses without fossils suggest an African origin with a dispersal to Asia from India and a South Atlantic dispersal to South America. When fossils are included, hypothesis‐testing rejects this scenario and equally supports a Boreotropical and an Afro‐European origin with a South Atlantic route and a dispersal to Asia from Europe.

    Main conclusions

    Biogeographical inferences of disjunctly distributed taxa should be interpreted with caution when fossils are not included. Although one alternative hypothesis was not completely rejected, results show that the Boreotropical hypothesis for the PDV clade could be a robust explanation for its actual distribution. This hypothesis is mostly overlooked in animal taxa and rigorous tests with other taxa with similar distributions may reveal that a Boreotropical origin is common. We discuss methodological approaches that could improve biogeographical tests using fossils as terminals.

     
    more » « less