- NSF-PAR ID:
- 10314019
- Editor(s):
- Coelho, Luis Pedro
- Date Published:
- Journal Name:
- PLOS Computational Biology
- Volume:
- 17
- Issue:
- 11
- ISSN:
- 1553-7358
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Latent Interacting Variable Effects (LIVE) modeling is a framework to integrate different types of microbiome multi-omics data by combining latent variables from single-omic models into a structured meta-model to determine discriminative, interacting multi-omics features driving disease status. We implemented and tested LIVE modeling in publicly available metagenomics and metabolomics datasets from Crohn’s Disease and Ulcerative Colitis patients. Here, LIVE modeling reduced the number of feature correlations from the original data set for CD and UC to tractable numbers and facilitated prioritization of biological associations between microbes, metabolites, enzymes and IBD status through the application of stringent thresholds on generated inferential statistics. We determined LIVE modeling confirmed previously reported IBD biomarkers and uncovered potentially novel disease mechanisms in IBD. LIVE modeling makes a distinct and complementary contribution to the current methods to integrate microbiome data to predict IBD status because of its flexibility to adapt to different types of microbiome multi-omics data, scalability for large and small cohort studies via reliance on latent variables and dimensionality reduction, and the intuitive interpretability of the linear meta-model integrating -omic data types. The results of LIVE modeling and the biological relationships can be represented in networks that connect local correlation structure of single omic data types with global community and omic structure in the latent variable VIP scores. This model arises as novel tool that allows researchers to be more selective about omic feature interaction without disrupting the structural correlation framework provided by sPLS-DA interaction effects modeling. It will lead to form testable hypothesis by identifying potential and unique interactions between metabolome and microbiome that must be considered for future studies.more » « less
-
Despite advances in sequencing, lack of standardization makes comparisons across studies challenging and hampers insights into the structure and function of microbial communities across multiple habitats on a planetary scale. Here we present a multi-omics analysis of a diverse set of 880 microbial community samples collected for the Earth Microbiome Project. We include amplicon (16S, 18S, ITS) and shotgun metagenomic sequence data, and untargeted metabolomics data (liquid chromatography-tandem mass spectrometry and gas chromatography mass spectrometry). We used standardized protocols and analytical methods to characterize microbial communities, focusing on relationships and co-occurrences of microbially related metabolites and microbial taxa across environments, thus allowing us to explore diversity at extraordinary scale. In addition to a reference database for metagenomic and metabolomic data, we provide a framework for incorporating additional studies, enabling the expansion of existing knowledge in the form of an evolving community resource. We demonstrate the utility of this database by testing the hypothesis that every microbe and metabolite is everywhere but the environment selects. Our results show that metabolite diversity exhibits turnover and nestedness related to both microbial communities and the environment, whereas the relative abundances of microbially related metabolites vary and co-occur with specific microbial consortia in a habitat-specific manner. We additionally show the power of certain chemistry, in particular terpenoids, in distinguishing Earth’s environments (for example, terrestrial plant surfaces and soils, freshwater and marine animal stool), as well as that of certain microbes including Conexibacter woesei (terrestrial soils), Haloquadratum walsbyi (marine deposits) and Pantoea dispersa (terrestrial plant detritus). This Resource provides insight into the taxa and metabolites within microbial communities from diverse habitats across Earth, informing both microbial and chemical ecology, and provides a foundation and methods for multi-omics microbiome studies of hosts and the environment.more » « less
-
Compositional data sets are ubiquitous in science, including geology, ecology, and microbiology. In microbiome research, compositional data primarily arise from high-throughput sequence-based profiling experiments. These data comprise microbial compositions in their natural habitat and are often paired with covariate measurements that characterize physicochemical habitat properties or the physiology of the host. Inferring parsimonious statistical associations between microbial compositions and habitat- or host-specific covariate data is an important step in exploratory data analysis. A standard statistical model linking compositional covariates to continuous outcomes is the linear log-contrast model. This model describes the response as a linear combination of log-ratios of the original compositions and has been extended to the high-dimensional setting via regularization. In this contribution, we propose a general convex optimization model for linear log-contrast regression which includes many previous proposals as special cases. We introduce a proximal algorithm that solves the resulting constrained optimization problem exactly with rigorous convergence guarantees. We illustrate the versatility of our approach by investigating the performance of several model instances on soil and gut microbiome data analysis tasks.more » « less
-
Multivariable models for prediction or estimating associations with an outcome are rarely built in isolation. Instead, they are based upon a mixture of covariates that have been evaluated in earlier studies (eg, age, sex, or common biomarkers) and covariates that were collected specifically for the current study (eg, a panel of novel biomarkers or other hypothesized risk factors). For that context, we present the multistep elastic net (MSN), which considers penalized regression with variables that can be qualitatively grouped based upon their degree of prior research support: established predictors vs unestablished predictors. The MSN chooses between uniform penalization of all predictors (the standard elastic net) and weaker penalization of the established predictors in a cross‐validated framework and includes the option to impose zero penalty on the established predictors. In simulation studies that reflect the motivating context, we show the comparability or superiority of the MSN over the standard elastic net, the Integrative LASSO with Penalty Factors, the sparse group lasso, and the group lasso, and we investigate the importance of not penalizing the established predictors at all. We demonstrate the MSN to update a prediction model for pediatric ECMO patient mortality.
-
The integration of multiple ‘omics’ datasets is a promising avenue for answering many important and challenging questions in biology, particularly those relating to complex ecological systems. Whereas, multi-omics was developed using data from model organisms with significant prior knowledge and resources, its application to non-model organisms, such as coral holobionts, is less clear-cut. We explore, in the emerging rice coral model Montipora capitata, the intersection of holobiont transcriptomic, proteomic, metabolomic, and microbiome amplicon data and investigate how well they correlate under high temperature treatment. Using a typical thermal stress regime, we show that transcriptomic and proteomic data broadly capture the stress response of the coral, whereas the metabolome and microbiome datasets show patterns that likely reflect stochastic and homeostatic processes associated with each sample. These results provide a framework for interpreting multi-omics data generated from non-model systems, particularly those with complex biotic interactions among microbial partners.more » « less