skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On Parseval Frames of Kernel Functions in de Branges Spaces of Entire Vector Valued Functions
We consider the existence and structure properties of Parseval frames of kernel functions in vector valued de Branges spaces. We develop some sufficient conditions for Parseval sequences by identifying the main construction with Naimark dilation of frames. The dilation occurs by embedding the de Branges space of vector valued functions into a dilated de Branges space of vector valued functions. The embedding also maps the kernel functions associated with a frame sequence of the original space into a Riesz basis for the embedding space. We also develop some sufficient conditions for a dilated de Branges space to have the Kramer sampling property.  more » « less
Award ID(s):
1830254 1934884
PAR ID:
10314053
Author(s) / Creator(s):
;
Date Published:
Journal Name:
New Directions in Function Theory: From Complex to Hypercomplex to Non-Commutative
Volume:
286
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Frames in finite-dimensional vector spaces are spanning sets of vectors which provide redundant representations of signals. TheParseval framesare particularly useful and important, since they provide a simple reconstruction scheme and are maximally robust against certain types of noise. In this paper we describe a theory of frames on arbitrary vector bundles—this is the natural setting for signals which are realized as parameterized families of vectors rather than as single vectors—and discuss the existence of Parseval frames in this setting. Our approach is phrased in the language of G G -bundles, which allows us to use many tools from classical algebraic topology. In particular, we show that orientable vector bundles always admit Parseval frames of sufficiently large size and provide an upper bound on the necessary size. We also give sufficient conditions for the existence of Parseval frames of smaller size for tangent bundles of several families of manifolds, and provide some numerical evidence that Parseval frames on vector bundles share the desirable reconstruction properties of classical Parseval frames. 
    more » « less
  2. null (Ed.)
    Vector space models for symbolic processing that encode symbols by random vectors have been proposed in cognitive science and connectionist communities under the names Vector Symbolic Architecture (VSA), and, synonymously, Hyperdimensional (HD) computing. In this paper, we generalize VSAs to function spaces by mapping continuous-valued data into a vector space such that the inner product between the representations of any two data points represents a similarity kernel. By analogy to VSA, we call this new function encoding and computing framework Vector Function Architecture (VFA). In VFAs, vectors can represent individual data points as well as elements of a function space (a reproducing kernel Hilbert space). The algebraic vector operations, inherited from VSA, correspond to well-defined operations in function space. Furthermore, we study a previously proposed method for encoding continuous data, fractional power encoding (FPE), which uses exponentiation of a random base vector to produce randomized representations of data points and fulfills the kernel properties for inducing a VFA. We show that the distribution from which elements of the base vector are sampled determines the shape of the FPE kernel, which in turn induces a VFA for computing with band-limited functions. In particular, VFAs provide an algebraic framework for implementing large-scale kernel machines with random features, extending Rahimi and Recht, 2007. Finally, we demonstrate several applications of VFA models to problems in image recognition, density estimation and nonlinear regression. Our analyses and results suggest that VFAs constitute a powerful new framework for representing and manipulating functions in distributed neural systems, with myriad applications in artificial intelligence. 
    more » « less
  3. Discrete and continuous frames can be considered as positive operator-valued measures (POVMs) that have integral representations using rank-one operators. However, not every POVM has an integral representation. One goal of this paper is to examine the POVMs that have finite-rank integral representations. More precisely, we present a necessary and sufficient condition under which a positive operator-valued measure $$F: \Omega \to B(H)$$ has an integral representation of the form $$F(E) =\sum_{k=1}^{m} \int_{E}\, G_{k}(\omega)\otimes G_{k}(\omega) d\mu(\omega)$$ for some weakly measurable maps $$G_{k} \ (1\leq k\leq m) $$ from a measurable space $$\Omega$$ to a Hilbert space $$\mathcal{H}$$ and some positive measure $$\mu$$ on $$\Omega$$. Similar characterizations are also obtained for projection-valued measures. As special consequences of our characterization we settle negatively a problem of Ehler and Okoudjou about probability frame representations of probability POVMs, and prove that an integral representable probability POVM can be dilated to a integral representable projection-valued measure if and only if the corresponding measure is purely atomic. 
    more » « less
  4. We study integral operators on the space of square-integrable functions from a compact set, X, to a separableHilbert space,H. The kernel of such an operator takes values in the ideal of Hilbert–Schmidt operators on H.We establish regularity conditions on the kernel under which the associated integral operator is trace class. First, we extend Mercer’s theorem to operator-valued kernels by proving that a continuous, nonnegative-definite, Hermitian symmetric kernel defines a trace class integral operator on L2(X; H) under an additional assumption. Second, we show that a general operator-valued kernel that is defined on a compact set and that is Hölder continuous with Hölder exponent greater than a half is trace class provided that the operator-valued kernel is essentially bounded as a mapping into the space of trace class operators on H. Finally, when dim H < ∞, we show that an analogous result also holds for matrix-valued kernels on the real line, provided that an additional exponential decay assumption holds. 
    more » « less
  5. Abstract We prove two compactness results for function spaces with finite Dirichlet energy of half‐space nonlocal gradients. In each of these results, we provide sufficient conditions on a sequence of kernel functions that guarantee the asymptotic compact embedding of the associated nonlocal function spaces into the class of square‐integrable functions. Moreover, we will demonstrate that the sequence of nonlocal function spaces converges in an appropriate sense to a limiting function space. As an application, we prove uniform Poincaré‐type inequalities for sequence of half‐space gradient operators. We also apply the compactness result to demonstrate the convergence of appropriately parameterized nonlocal heterogeneous anisotropic diffusion problems. We will construct asymptotically compatible schemes for these type of problems. Another application concerns the convergence and robust discretization of a nonlocal optimal control problem. 
    more » « less