The integration of electric vehicles (EVs) into the electric power distribution system poses numerous challenges and opportunities for optimizing energy management and system operations. Electric vehicle grid interfaces (EVGIs), essentially bidirectional power converters, allow for charging/grid-to-vehicle (G2V) and discharging/vehicle-to-grid (V2G) power transfers. A power dispatch estimation (PDE) model for V2G, based on availability of EVs in a distribution system and capabilities of the distribution system, is needed to assist in grid operations. This paper presents the development of a PDE model based on nodal power flows to capture the complex spatiotemporal dependencies inherent in G2V and V2G patterns. The hierarchical structure of a distribution system, feeder to EVGI node, is taken into consideration for PDE. Typical PDE estimation results are presented for the IEEE 34 test node feeder distribution system allocated with EVGIs.
more »
« less
Analyzing the Impact of Electric Vehicles on Power Losses and Voltage Profile in Power Distribution Systems
As the number of electric vehicles (EVs) within society rapidly increase, the concept of maximizing its efficiency within the electric smart grid becomes crucial. This research presents the impacts of integrating EV charging infrastructures within a smart grid through a vehicle to grid (V2G) program. It also observes the circulation of electric charge within the system so that the electric grid does not become exhausted during peak hours. This paper will cover several different case studies and will analyze the best and worst scenarios for the power losses and voltage profiles in the power distribution system. Specifically, we seek to find the optimal location as well as the ideal number of EVs in the distribution system while minimizing its power losses and optimizing its voltage profile. Verification of the results are primarily conducted using GUIs created on MATLAB. These simulations aim to develop a better understanding of the potential impacts of electric vehicles in smart grids, such as power quality and monetary benefits for utility companies and electric vehicle users
more »
« less
- Award ID(s):
- 1659650
- PAR ID:
- 10314071
- Date Published:
- Journal Name:
- 2022 WCX™ World Congress Experience - SAE International
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The transition to electric vehicles (EVs) is underway globally and EVs are expected to become more widely adopted in the coming years. One of the main characteristics of EVs is that they are not only seen as mean for transportation but also potentially as a flexible energy storage resource in vehicle-to-grid (V2G) applications. This paper proposes a resilience analysis on the feasibility of using EVs for power restoration and supply of residential networked microgrids (MGs) experiencing a power outage due to extreme weather. In order to evaluate the effectiveness of utilizing EVs as a backup power supply during an outage, various case studies are presented considering different scenarios and resilience metrics. Test results demonstrate that EVs can satisfy the energy requirements of a residential household for more than 6 hours but, also provide power to the distribution grid through MG aggregation.more » « less
-
null (Ed.)In the last several decades, public interest for electric vehicles (EVs) and research initiatives for smart AC and DC microgrids have increased substantially. Although EVs can yield benefits to their use, they also present new demand and new business models for a changing power grid. Some of the challenges include stochastic demand profiles from EVs, unplanned load growth by rapid EV adoption, and potential frequency (harmonics) and voltage disturbances due to uncoordinated charging. In order to properly account for any of these problems, an accurate and validated model for EV distributions in a power grid must be established. This model (or several models) may then be used for economic and technical analyses. This paper supplies insight into the impact that EVs play in effecting critical loads in a system, and develops a theoretical model to further support a hardware in-the-loop (HIL) real time simulation of modelling and analysis of a distribution feeder with distributed energy resources (DERs) and EVs based on existing data compiled.more » « less
-
This paper examines an application of a two-lane microscopic Traffic Flow (TF) simulation to comprehend the impact of the complex behavior of Dynamic Wireless Power Transfer (DWPT) charging systems onto electric power distribution grids. The proposed approach utilizes real-world data to determine a more accurate TF density at each time interval. The simulation is carried out considering all vehicles, whether electric vehicles (EVs) or non-electric, and they have a randomized lane changing behavior and fluctuating velocities following a leading car model. Three different scenarios are conducted for 5 mile, 10 mile, and 15 mile DWPT networks that are proportionally connected to an IEEE 33-bus distribution grid. Our findings indicate that EVs' average State-of-Charge (SOC) increases proportionally and significantly at each DWPT network length. Furthermore, the load demand generated from the DWPT network also increases proportionally with its length; and this increment in load demand causes adverse impacts on distribution grid voltage magnitudes exceeding operational standards that leads to equipment failure or blackout events.more » « less
-
We develop hierarchical coordination frameworks to optimally manage active and reactive power dispatch of number of spatially distributed electric vehicles (EVs) incorporating distribution grid level constraints. The frameworks consist of detailed mathematical models, which can benefit the operation of both entities involved, i.e., the grid operations and EV charging. The first model comprises of a comprehensive optimal power flow model at the distribution grid level, while the second model represents detailed optimal EV charging with reactive power support to the grid. We demonstrate benefits of coordinated dispatch of active and reactive power from EVs using a 33-node distribution feeder with large number of EVs (more than 5,000). Case studies demonstrate that, in constrained distribution grids, coordinated charging reduces the average cost of EV charging if the charging takes place at non-unity power factor mode compared to unity power factor. Similarly, the results also demonstrate that distribution grids can accommodate charging of increased number of EVs if EV charging takes place at non-unity power factor mode compared to unity power factor.more » « less
An official website of the United States government

