skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The science case for LIGO-India
Abstract The global network of gravitational-wave detectors has completed three observing runs with ∼50 detections of merging compact binaries. A third LIGO detector, with comparable astrophysical reach, is to be built in India (LIGO-Aundha) and expected to be operational during the latter part of this decade. Such additions to the network increase the number of baselines and the network SNR of GW events. These enhancements help improve the sky-localization of those events. Multiple detectors simultaneously in operation will also increase the baseline duty factor, thereby, leading to an improvement in the detection rates and, hence, the completeness of surveys. In this paper, we quantify the improvements due to the expansion of the LIGO global network in the precision with which source properties will be measured. We also present examples of how this expansion will give a boost to tests of fundamental physics.  more » « less
Award ID(s):
1841480
PAR ID:
10314085
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Classical and Quantum Gravity
Volume:
39
Issue:
2
ISSN:
0264-9381
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Based on the prior O1–O2 observing runs, about 30% of the data collected by Advanced LIGO and Virgo in the next observing runs are expected to be single-interferometer data, i.e. they will be collected at times when only one detector in the network is operating in observing mode. Searches for gravitational-wave signals from supernova events do not rely on matched filtering techniques because of the stochastic nature of the signals. If a Galactic supernova occurs during single-interferometer times, separation of its unmodelled gravitational-wave signal from noise will be even more difficult due to lack of coherence between detectors. We present a novel machine learning method to perform single-interferometer supernova searches based on the standard LIGO-Virgo coherent WaveBurst pipeline. We show that the method may be used to discriminate Galactic gravitational-wave supernova signals from noise transients, decrease the false alarm rate of the search, and improve the supernova detection reach of the detectors. 
    more » « less
  2. We investigate the feasibility of using trees as a seismic meta-material that could shield the LIGO detectors from seismic activity. This seismic cloak would reflect low frequency surface waves away from the detector, thereby increasing the sensitivity of the detectors. This study models the energy transfer from surface waves as they pass through the bandgap filters designed from trees in different arrangements. The attenuation and rejection will hopefully serve to cloak the LIGO detectors from seismic activity. This work could have future impact on high sensitivity detectors, leading to more detections of merger events. 
    more » « less
  3. Abstract The waveform of a compact binary coalescence is predicted by general relativity. It is therefore possible to directly constrain the response of a gravitational-wave (GW) detector by analyzing a signal’s observed amplitude and phase evolution as a function of frequency. GW signals alone constrain the relative amplitude and phase between different frequencies within the same detector and between different detectors. Furthermore, if the source’s distance and inclination can be determined independently, for example from an electromagnetic (EM) counterpart, one can calibrate the absolute amplitude response of the detector network. We analyze GW170817’s ability to calibrate the LIGO/Virgo detectors, finding a relative amplitude calibration precision of approximately20% and relative phase precision of(uncertainty) between the LIGO Hanford and Livingston detectors. Incorporating additional information about the distance and inclination of the source from EM observations, the relative amplitude of the LIGO detectors can be tightened to  ∼%. Including EM observations also constrains the absolute amplitude precision to similar levels. We investigate the ability of future events to improve astronomical calibration. By simulating the cumulative uncertainties from an ensemble of detections, we find that with several hundred events with EM counterparts, or several thousand events without counterparts, we reach percent-level astronomical calibration. This corresponds to  ∼5–10 years of operation at advanced LIGO and Virgo design sensitivity. It is to be emphasized that directin situmeasurements of detector calibration provide significantly higher precision than astronomical sources, and already constrain the calibration to a few percent in amplitude and a few degrees in phase. In this sense, our astronomical calibrators only corroborate existing calibration measurements. Nonetheless, it is remarkable that we are able to use an astronomical GW source to characterize properties of a terrestrial GW instrument, and astrophysical calibration may become an important corroboration of existing calibration methods, providing a completely independent constraint of potential systematics. 
    more » « less
  4. Abstract The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org . The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages. 
    more » « less
  5. Gravitational-wave memory effects arise from nonoscillatory components of gravitational-wave signals, and they are predictions of general relativity in the nonlinear regime that have close connections to the asymptotic properties of isolated gravitating systems. There are many types of memory effects that have been studied in the literature. In this paper we focus on the “displacement” and “spin” memories, which are expected to be the largest of these effects from sources such as the binary black hole mergers which have already been detected by LIGO and Virgo. The displacement memory is a change in the relative separation of two initially comoving observers due to a burst of gravitational waves, whereas the spin memory is a portion of the change in relative separation of observers with initial relative velocity. As both of these effects are small, LIGO, Virgo, and KAGRA can only detect memory effects from individual events that are much louder (and thus rarer) than those that have been detected so far. By combining data from multiple events, however, these effects could be detected in a population of binary mergers. In this paper, we present new forecasts for how long current and future detectors will need to operate in order to measure these effects from populations of binary black hole systems that are consistent with the populations inferred from the detections from LIGO and Virgo’s first three observing runs. We find that a second-generation detector network of LIGO, Virgo, and KAGRA operating at the O4 (“design”) sensitivity for 1.5 years and then operating at the O5 (“plus”) sensitivity for an additional 1.5 years can detect the displacement memory. For Cosmic Explorer, we find that displacement memory could be detected for individual loud events, and that the spin memory could be detected in a population after 5 years of observation time. 
    more » « less