skip to main content

This content will become publicly available on December 15, 2022

Title: The science case for LIGO-India
Abstract The global network of gravitational-wave detectors has completed three observing runs with ∼50 detections of merging compact binaries. A third LIGO detector, with comparable astrophysical reach, is to be built in India (LIGO-Aundha) and expected to be operational during the latter part of this decade. Such additions to the network increase the number of baselines and the network SNR of GW events. These enhancements help improve the sky-localization of those events. Multiple detectors simultaneously in operation will also increase the baseline duty factor, thereby, leading to an improvement in the detection rates and, hence, the completeness of surveys. In this paper, we quantify the improvements due to the expansion of the LIGO global network in the precision with which source properties will be measured. We also present examples of how this expansion will give a boost to tests of fundamental physics.
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1841480
Publication Date:
NSF-PAR ID:
10314085
Journal Name:
Classical and Quantum Gravity
Volume:
39
Issue:
2
ISSN:
0264-9381
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The waveform of a compact binary coalescence is predicted by general relativity. It is therefore possible to directly constrain the response of a gravitational-wave (GW) detector by analyzing a signal’s observed amplitude and phase evolution as a function of frequency. GW signals alone constrain the relative amplitude and phase between different frequencies within the same detector and between different detectors. Furthermore, if the source’s distance and inclination can be determined independently, for example from an electromagnetic (EM) counterpart, one can calibrate the absolute amplitude response of the detector network. We analyze GW170817’s ability to calibrate the LIGO/Virgo detectors, findingmore »a relative amplitude calibration precision of approximately20% and relative phase precision of(uncertainty) between the LIGO Hanford and Livingston detectors. Incorporating additional information about the distance and inclination of the source from EM observations, the relative amplitude of the LIGO detectors can be tightened to  ∼%. Including EM observations also constrains the absolute amplitude precision to similar levels. We investigate the ability of future events to improve astronomical calibration. By simulating the cumulative uncertainties from an ensemble of detections, we find that with several hundred events with EM counterparts, or several thousand events without counterparts, we reach percent-level astronomical calibration. This corresponds to  ∼5–10 years of operation at advanced LIGO and Virgo design sensitivity. It is to be emphasized that directin situmeasurements of detector calibration provide significantly higher precision than astronomical sources, and already constrain the calibration to a few percent in amplitude and a few degrees in phase. In this sense, our astronomical calibrators only corroborate existing calibration measurements. Nonetheless, it is remarkable that we are able to use an astronomical GW source to characterize properties of a terrestrial GW instrument, and astrophysical calibration may become an important corroboration of existing calibration methods, providing a completely independent constraint of potential systematics.

    « less
  2. Abstract

    Based on the prior O1–O2 observing runs, about 30% of the data collected by Advanced LIGO and Virgo in the next observing runs are expected to be single-interferometer data, i.e. they will be collected at times when only one detector in the network is operating in observing mode. Searches for gravitational-wave signals from supernova events do not rely on matched filtering techniques because of the stochastic nature of the signals. If a Galactic supernova occurs during single-interferometer times, separation of its unmodelled gravitational-wave signal from noise will be even more difficult due to lack of coherence between detectors. Wemore »present a novel machine learning method to perform single-interferometer supernova searches based on the standard LIGO-Virgo coherent WaveBurst pipeline. We show that the method may be used to discriminate Galactic gravitational-wave supernova signals from noise transients, decrease the false alarm rate of the search, and improve the supernova detection reach of the detectors.

    « less
  3. Abstract

    Dark matter exists in our Universe, but its nature remains mysterious. The remarkable sensitivity of the Laser Interferometer Gravitational-Wave Observatory (LIGO) may be able to solve this mystery. A good dark matter candidate is the ultralight dark photon. Because of its interaction with ordinary matter, it induces displacements on LIGO mirrors that can lead to an observable signal. In a study that bridges gravitational wave science and particle physics, we perform a direct dark matter search using data from LIGO’s first (O1) data run, as opposed to an indirect search for dark matter via its production of gravitational waves.more »We demonstrate an achieved sensitivity on squared coupling as$$\sim\! 4\times 1{0}^{-45}$$~4×1045, in a$$U{(1)}_{{\rm{B}}}$$U(1)Bdark photon dark matter mass band around$${m}_{{\rm{A}}} \sim 4\,\times 1{0}^{-13}$$mA~4×1013eV. Substantially improved search sensitivity is expected during the coming years of continued data taking by LIGO and other gravitational wave detectors in a growing global network.

    « less
  4. ABSTRACT

    GW170817 showed that neutron star mergers not only emit gravitational waves but also can release electromagnetic signatures in multiple wavelengths. Within the first half of the third observing run of the Advanced LIGO and Virgo detectors, there have been a number of gravitational wave candidates of compact binary systems for which at least one component is potentially a neutron star. In this article, we look at the candidates S190425z, S190426c, S190510g, S190901ap, and S190910h, predicted to have potentially a non-zero remnant mass, in more detail. All these triggers have been followed up with extensive campaigns by the astronomical communitymore »doing electromagnetic searches for their optical counterparts; however, according to the released classification, there is a high probability that some of these events might not be of extraterrestrial origin. Assuming that the triggers are caused by a compact binary coalescence and that the individual source locations have been covered during the EM follow-up campaigns, we employ three different kilonova models and apply them to derive possible constraints on the matter ejection consistent with the publicly available gravitational-wave trigger information and the lack of a kilonova detection. These upper bounds on the ejecta mass can be related to limits on the maximum mass of the binary neutron star candidate S190425z and to constraints on the mass-ratio, spin, and NS compactness for the potential black hole–neutron star candidate S190426c. Our results show that deeper electromagnetic observations for future gravitational wave events near the horizon limit of the advanced detectors are essential.

    « less
  5. The detection of gravitational-wave signals by the LIGO and Virgo observatories during the past few years has ushered us into the era of gravitational-wave astronomy, shifting our focus from detection to source parameter estimation. This has imposed stringent requirements on calibration in order to maximize the astrophysical information extracted from these detected signals. Current detectors rely on photon radiation pressure from auxiliary lasers to achieve required calibration accuracy. These photon calibrators have made significant improvements over the last few years, realizing fiducials displacements with sub-percent accuracy. This achieved accuracy is directly dependent on the laser power calibration. For the nextmore »observing campaign, scheduled to begin at the end of 2022, a new scheme is being implemented to achieve improved laser power calibration accuracy for all of the GW detectors in the global network. It is expected to significantly improve absolute and relative calibration accuracy for the entire network.« less