skip to main content


Title: Regular Sequential Serializability and Regular Sequential Consistency
Strictly serializable (linearizable) services appear to execute transactions (operations) sequentially, in an order consistent with real time. This restricts a transaction's (operation's) possible return values and in turn, simplifies application programming. In exchange, strictly serializable (linearizable) services perform worse than those with weaker consistency. But switching to such services can break applications. This work introduces two new consistency models to ease this trade-off: regular sequential serializability (RSS) and regular sequential consistency (RSC). They are just as strong for applications: we prove any application invariant that holds when using a strictly serializable (linearizable) service also holds when using an RSS (RSC) service. Yet they relax the constraints on services---they allow new, better-performing designs. To demonstrate this, we design, implement, and evaluate variants of two systems, Spanner and Gryff, relaxing their consistency to RSS and RSC, respectively. The new variants achieve better read-only transaction and read tail latency than their counterparts.  more » « less
Award ID(s):
1824130
NSF-PAR ID:
10314096
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM Symposium on Operating Systems Principles
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Strictly serializable datastores greatly simplify application development. However, existing techniques pay unnecessary costs for naturally consistent transactions, which arrive at servers in an order that is already strictly serializable. We exploit this natural arrival order by executing transactions with minimal costs while optimistically assuming they are naturally consistent, and then leverage a timestamp-based technique to efficiently verify if the execution is indeed consistent. In the process of this design, we identify a fundamental pitfall in relying on timestamps to provide strict serializability and name it the timestamp-inversion pitfall. We show that timestamp inversion has affected several existing systems. We present Natural Concurrency Control (NCC), a new concurrency control technique that guarantees strict serializability and ensures minimal costs—i.e., one-round latency, lock-free, and non-blocking execution—in the common case by leveraging natural consistency. NCC is enabled by three components: non-blocking execution, decoupled response management, and timestamp-based consistency checking. NCC avoids the timestamp-inversion pitfall with response timing control and proposes two optimization techniques, asynchrony-aware timestamps and smart retry, to reduce false aborts. Moreover, NCC designs a specialized protocol for read-only transactions, which is the first to achieve optimal best-case performance while guaranteeing strict serializability without relying on synchronized clocks. Our evaluation shows NCC outperforms state-of-the-art strictly serializable solutions by an order of magnitude on many workloads. 
    more » « less
  2. Many globally distributed data stores need to replicate data across large geographic distances. Since synchronously replicating data across such distances is slow, those systems with high consistency requirements often geo-partition data and direct all linearizable requests to the primary region of the accessed data. This significantly improves performance for workloads where most transactions access data close to where they originate from. However, supporting serializable multi-geo-partition transactions is a challenge, and they often degrade the performance of the whole system. This becomes even more challenging when they conflict with single-partition requests, where optimistic protocols lead to high numbers of aborts, and pessimistic protocols lead to high numbers of distributed deadlocks. In this paper, we describe the design of concurrency control and deadlock resolution protocols, built within a practical, complete implementation of a geographically replicated database system called Detock, that enables processing strictly-serializable multi-region transactions with near-zero performance degradation at extremely high conflict and order of magnitude higher throughput relative to state-of-the art geo-replication approaches, while improving latency by up to a factor of 5.

     
    more » « less
  3. null (Ed.)
    The adoption of low latency persistent memory modules (PMMs) upends the long-established model of remote storage for distributed file systems. Instead, by colocating computation with PMM storage, we can provide applications with much higher IO performance, sub-second application failover, and strong consistency. To demonstrate this, we built the Assise distributed file system, based on a persistent, replicated coherence protocol that manages client-local PMM as a linearizable and crash-recoverable cache between applications and slower (and possibly remote) storage. Assise maximizes locality for all file IO by carrying out IO on process-local, socket-local, and client-local PMM whenever possible. Assise minimizes coherence overhead by maintaining consistency at IO operation granularity, rather than at fixed block sizes. We compare Assise to Ceph/BlueStore, NFS, and Octopus on a cluster with Intel Optane DC PMMs and SSDs for common cloud applications and benchmarks, such as LevelDB, Postfix, and FileBench. We find that Assise improves write latency up to 22x, throughput up to 56x, fail-over time up to 103x, and scales up to 6x better than its counterparts, while providing stronger consistency semantics. 
    more » « less
  4. To deliver scalable performance to large-scale scientific and data analytic applications, HPC cluster architectures adopt the distributed-memory model. The performance and scalability of parallel applications on such systems are limited by the communication cost across compute nodes. Therefore, projecting the minimum communication cost and maximum scalability of the user applications plays a critical role in assessing the benefits of porting these applications to HPC clusters as well as developing efficient distributed-memory implementations. Unfortunately, this task is extremely challenging for end users, as it requires comprehensive knowledge of the target application and hardware architecture and demands significant effort and time for manual system analysis. To streamline the process of porting user applications to HPC clusters, this paper presents CommAnalyzer, an automated framework for estimating the communication cost on distributed-memory models from sequential code. CommAnalyzer uses novel dynamic program analyses and graph algorithms to capture the inherent flow of program values (information) in sequential code to estimate the communication when this code is ported to HPC clusters. Therefore, CommAnalyzer makes it possible to project the efficiency/scalability upper-bound (i.e., Roofline) of the effective distributed-memory implementation before even developing one. The experiments with real-world, regular and irregular HPC applications demonstrate the utility of CommAnalyzer in estimating the minimum communication of sequential applications on HPC clusters. In addition, the optimized MPI+X implementations achieve more than 92% of the efficiency upper-bound across the different workloads. 
    more » « less
  5. null (Ed.)
    Fast networks and the desire for high resource utilization in data centers and the cloud have driven disaggregation. Application compute is separated from storage, but this leads to high overheads when data must move over the network for simple operations on it. Alternatively, systems could allow applications to run application logic within storage via user-defined functions. Unfortunately, this ties provisioning and utilization of storage and compute resources together again. We present a new approach to executing storage-level functions in an in-memory key-value store that avoids this problem by dynamically deciding where to execute functions over data. Users write storage functions that are logically decoupled from storage, but storage servers choose where to run invocations of these functions physically. By using a server-internal cost model and observing function execution, servers choose to directly run inexpensive functions, while preferring to execute functions with high CPU-cost at client machines. We show that with this approach storage servers can reduce network request processing costs, avoid server compute bottlenecks, and improve aggregate storage system throughput. We realize our approach on an in-memory key-value store that executes 3.2 million strict serializable user-defined storage functions per second with 100 us response times. When running a mix of logic from different applications, it provides throughput better than running that logic purely at storage servers (85% more) or purely at clients (10% more). For our workloads, it also reduces latency (up to 2x) and transactional aborts (up to 33%) over pure client-side execution. 
    more » « less