skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1824130

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Asynchronously replicated primary-backup databases are commonly deployed to improve availability and offload read-only transactions. To both apply replicated writes from the primary and serve read-only transactions, the backups implement a cloned concurrency control protocol. The protocol ensures read-only transactions always return a snapshot of state that previously existed on the primary. This compels the backup to exactly copy the commit order resulting from the primary's concurrency control. Existing cloned concurrency control protocols guarantee this by limiting the backup's parallelism. As a result, the primary's concurrency control executes some workloads with more parallelism than these protocols. In this paper, we prove that this parallelism gap leads to unbounded replication lag, where writes can take arbitrarily long to replicate to the backup and which has led to catastrophic failures in production systems. We then design C5, the first cloned concurrency protocol to provide bounded replication lag. We implement two versions of C5: Our evaluation in MyRocks, a widely deployed database, demonstrates C5 provides bounded replication lag. Our evaluation in Cicada, a recent in-memory database, demonstrates C5 keeps up with even the fastest of primaries. 
    more » « less
  2. Strictly serializable (linearizable) services appear to execute transactions (operations) sequentially, in an order consistent with real time. This restricts a transaction's (operation's) possible return values and in turn, simplifies application programming. In exchange, strictly serializable (linearizable) services perform worse than those with weaker consistency. But switching to such services can break applications. This work introduces two new consistency models to ease this trade-off: regular sequential serializability (RSS) and regular sequential consistency (RSC). They are just as strong for applications: we prove any application invariant that holds when using a strictly serializable (linearizable) service also holds when using an RSS (RSC) service. Yet they relax the constraints on services---they allow new, better-performing designs. To demonstrate this, we design, implement, and evaluate variants of two systems, Spanner and Gryff, relaxing their consistency to RSS and RSC, respectively. The new variants achieve better read-only transaction and read tail latency than their counterparts. 
    more » « less
  3. null (Ed.)
    Read-only transactions are critical for consistently reading data spread across a distributed storage system but have worse performance than simple, non-transactional reads. We identify three properties of simple reads that are necessary for read-only transactions to be performance-optimal, i.e.,come as close as possible to simple reads. We demonstrate a fundamental tradeoff in the design of read-only transactions by proving that performance optimality is impossible to achieve with strict serializability, the strongest consistency.Guided by this result, we present PORT, a performance-optimal design with the strongest consistency to date. Central to PORT are version clocks, a specialized logical clock that concisely captures the necessary ordering constraints.We show the generality of PORT with two applications.Scylla-PORT provides process-ordered serializability with simple writes and shows performance comparable to its non-transactional base system. Eiger-PORT provides causal consistency with write transactions and significantly improves the performance of its transactional base system. 
    more » « less
  4. Linearizability reduces the complexity of building correct applications. However, there is a tradeoff between using linearizability for geo-replicated storage and low tail latency. Traditional approaches use consensus to implement linearizable replicated state machines, but consensus is inefficient for workloads composed mostly of reads and writes. We present the design, implementation, and evaluation of Gryff, a system that offers linearizability and low tail latency by unifying consensus with shared registers. Gryff introduces carstamps to correctly order reads and writes without incurring unnecessary constraints that are required when ordering stronger synchronization primitives. Our evaluation shows that Gryff’s combination of an optimized shared register protocol with EPaxos allows it to provide lower service-level latency than EPaxos or MultiPaxos due to its lower tail latency for reads. 
    more » « less