skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bringing Social Computing to Secondary School Classrooms
Social computing is the study of how technology shapes human social interactions. This topic has become increasingly relevant to secondary school students (ages 11--18) as more of young people's everyday social experiences take place online, particularly with the continuing effects of the COVID-19 pandemic. However, social computing topics are rarely touched upon in existing middle and high school curricula. We seek to introduce concepts from social computing to secondary school students so they can understand how computing has wide-ranging social implications that touch upon their everyday lives, as well as think critically about both the positive and negative sides of different social technology designs. In this report, we present a series of six lessons combining presentations and hands-on activities covering topics within social computing and detail our experience teaching these lessons to approximately 1,405 students across 13 middle and high schools in our local school district. We developed lessons covering how social computing relates to the topics of Data Management, Encrypted Messaging, Human-Computer Interaction Careers, Machine Learning and Bias, Misinformation, and Online Behavior. We found that 81.13% of students expressed greater interest in the content of our lessons compared to their interest in STEM overall. We also found from pre- and post-lesson comprehension questions that 63.65% learned new concepts from the main activity. We release all lesson materials on a website for public use. From our experience, we observed that students were engaged in these topics and found enjoyment in finding connections between computing and their own lives.  more » « less
Award ID(s):
2120497
PAR ID:
10523196
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400704239
Page Range / eLocation ID:
123 to 129
Format(s):
Medium: X
Location:
Portland OR USA
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper will share the design of a learning environment that uses flight simulator-based activities designed to cognitively engage middle school students. The flight simulator provides an exciting, realistic, and engaging learning experience. It allows students to recognize the linkage between the concepts and application in real-world. Lesson plans were developed for several math and physics concepts integrating the flight simulator activities. To ensure buy-in for classroom implementation, the topics of these lessons were identified in consultation with the local middle school STEM teachers. Professional development on using the pedagogical approach was then provided to teachers from the middle schools that serve primarily underrepresented populations. Middle school students experienced the learning environment as part of a summer camp to deeply understand some science and math concepts. A quasi experimental between-subjects research design was used. Pre-post content and attitude instruments were utilized to collect data for determining the effectiveness of the approach. This paper provides an updated analysis (N = 50) combining the previously reported data from the 2017 camp and the implementation results of the summer 2018 camp. Results indicated statistically significant gains in students’ content knowledge and positive changes in attitudes of mainly female students towards science, technology, engineering and math. 
    more » « less
  2. This paper reports on how 10 middle and high school preservice teachers (PSTs) designed a social justice focused lesson using the culturally responsive mathematics teaching (CRMT) tool. Results from our analysis indicate that most of the PSTs were able to select appropriate social justice topics, though not all the PSTs integrated mathematics and social justice throughout their lessons. The results show that most of the PSTs need more experience with mathematization, handling controversial discussions, and developing transformative student action. Our work also led to a modification of the tool (CRMT-M). We discuss the implications of the study for mathematics teacher preparation. 
    more » « less
  3. null (Ed.)
    Applications of Generative Machine Learning techniques such as Generative Adversarial Networks (GANs) are used to generate new instances of images, music, text, and videos. While GANs have now become commonplace on social media, a part of children’s lives, and have considerable ethical implications, existing K-12 AI education curricula do not include generative AI. We present a new module, “What are GANs?”, that teaches middle school students how GANs work and how they can create media using GANs. We developed an online, team-based game to simulate how GANs work. Students also interacted with up to four web tools that apply GANs to generate media. This module was piloted with 72 middle school students in a series of online workshops. We provide insight into student usage, understanding, and attitudes towards this lesson. Finally, we give suggestions for integrating this lesson into AI education curricula. 
    more » « less
  4. Lindgren, R; Asino, T I; Kyza, E A; Looi, C K; Keifert, D T; Suárez, E (Ed.)
    As part of a larger design-based research study, we developed middle school social studies and computer science units with a focus on food sovereignty to help students understand treaties and their ongoing impact on Indigenous people today. This paper reports on the iterative process of developing and implementing culturally responsive-sustaining computing curricula, particularly focusing on feedback from a master teacher panel. Teachers were excited about engaging students in computer science by linking it to their everyday lives, but also concerned about the difficulty of making complex concepts like food sovereignty accessible to students. 
    more » « less
  5. The impact of technology on workforce development and socio-economic prosperity has made K-12 computing engineering and STEM in general a national educational priority. However, the integration of computing remains obstructed by resources and lack of professional development to support students’ learning. Further challenging is that students’ STEM attitudes and interest do not matriculate with them into higher education. This issue is especially critical for traditionally underrepresented and underserved populations including females, racial/ethnic minority groups, and students of low-socioeconomic status (SES). To help mitigate these challenges, we developed an unplugged (computer-less) computing engineering and robotics lesson composed of three introductory computing concepts, sequencing, debugging, and sensing/ decision- making, using a small robot-arm and tangible programming blocks. Through students’ sequencing of operations, debugging, and executing of complex robotic behavior, we seek to determine if students’ interest or attitudes change toward engineering. Nine one-hour introductory pilot lessons with 148 students, grades 6-10, at two public middle schools, and one summer camp were conducted. For 43% of students, this was their first time participating in an engineering lesson. We measured students’ engineering interest and attitudes through a 15 question pre- and post-lesson survey and calculated aggregate factor scores for interest and attitudes. We found low-SES students’ a priori interests and attitudes tend to be lower and more varied than those of their high-SES peers. These preliminary results suggest that the integration of introductory computing and robotics lessons in low-SES classrooms may help students reach similar levels of engineering interest and attitudes as their high-SES peers. 
    more » « less