skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exposure to news grows less fragmented with an increase in mobile access
The abundance of media options is a central feature of today’s information environment. Many accounts, often based on analysis of desktop-only news use, suggest that this increased choice leads to audience fragmentation, ideological segregation, and echo chambers with no cross-cutting exposure. Contrary to many of those claims, this paper uses observational multiplatform data capturing both desktop and mobile use to demonstrate that coexposure to diverse news is on the rise, and that ideological self-selection does not explain most of that coexposure. We show that mainstream media outlets offer the common ground where ideologically diverse audiences converge online, though our analysis also reveals that more than half of the US online population consumes no online news, underlining the risk of increased information inequality driven by self-selection along lines of interest. For this study, we use an unprecedented combination of observed data from the United States comprising a 5-y time window and involving tens of thousands of panelists. Our dataset traces news consumption across different devices and unveils important differences in news diets when multiplatform or desktop-only access is used. We discuss the implications of our findings for how we think about the current communication environment, exposure to news, and ongoing attempts to limit the effects of misinformation.  more » « less
Award ID(s):
1729412
PAR ID:
10314227
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
46
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Healthy news consumption requires limited exposure to unreliable content and ideological diversity in the sources consumed. There are two challenges to this normative expectation: the prevalence of unreliable content online; and the prominence of misinformation within individual news diets. Here, we assess these challenges using an observational panel tracking the browsing behavior of N ≈ 140,000 individuals in the United States for 12 months (January–December 2018). Our results show that panelists who are exposed to misinformation consume more reliable news and from a more ideologically diverse range of sources. In other words, exposure to unreliable content is higher among the better informed. This association persists after we control for partisan leaning and consider inter- and intra-person variation. These findings highlight the tension between the positive and negative consequences of increased exposure to news content online. 
    more » « less
  2. Public opinion is shaped by the information news media provide, and that information in turn may be shaped by the ideological preferences of media outlets. But while much attention has been devoted to media bias via overt ideological language or topic selection, a more unobtrusive way in which the media shape opinion is via the strategic inclusion or omission of partisan events that may support one side or the other. We develop a latent variable-based framework to predict the ideology of news articles by comparing multiple articles on the same story and identifying partisan events whose inclusion or omission reveals ideology. Our experiments first validate the existence of partisan event selection, and then show that article alignment and cross-document comparison detect partisan events and article ideology better than competitive baselines. Our results reveal the high-level form of media bias, which is present even among mainstream media with strong norms of objectivity and nonpartisanship. Our codebase and dataset are available at https://github.com/launchnlp/ATC. 
    more » « less
  3. News media is expected to uphold unbiased reporting. Yet they may still affect public opinion by selectively including or omitting events that support or contradict their ideological positions. Prior work in NLP has only studied media bias via linguistic style and word usage. In this paper, we study to which degree media balances news reporting and affects consumers through event inclusion or omission. We first introduce the task of detecting both partisan and counter- partisan events: events that support or oppose the author’s political ideology. To conduct our study, we annotate a high-quality dataset, PAC, containing 8 , 511 (counter-)partisan event annotations in 304 news articles from ideologically diverse media outlets. We benchmark PAC to highlight the challenges of this task. Our findings highlight both the ways in which the news subtly shapes opinion and the need for large language models that better understand events within a broader context. Our dataset can be found at https://github.com/ launchnlp/Partisan-Event-Dataset. 
    more » « less
  4. Abstract We analyze social media activity during one of the largest protest mobilizations in US history to examine ideological asymmetries in the posting of news content. Using an unprecedented combination of four datasets (tracking offline protests, social media activity, web browsing, and the reliability of news sources), we show that there is no evidence of unreliable sources having any prominent visibility during the protest period, but we do identify asymmetries in the ideological slant of the sources shared on social media, with a clear bias towards right-leaning domains. These results support the “amplification of the right” thesis, which points to the structural conditions (social and technological) that lead to higher visibility of content with a partisan bent towards the right. Our findings provide evidence that right-leaning sources gain more visibility on social media and reveal that ideological asymmetries manifest themselves even in the context of movements with progressive goals. 
    more » « less
  5. Prior work on ideology prediction has largely focused on single modalities, i.e., text or images. In this work, we introduce the task of multimodal ideology prediction, where a model predicts binary or five-point scale ideological leanings, given a text-image pair with political content. We first collect five new large-scale datasets with English documents and images along with their ideological leanings, covering news articles from a wide range of mainstream media in US and social media posts from Reddit and Twitter. We conduct in-depth analyses on news articles and reveal differences in image content and usage across the political spectrum. Furthermore, we perform extensive experiments and ablation studies, demonstrating the effectiveness of targeted pretraining objectives on different model components. Our best performing model, a late-fusion architecture pretrained with a triplet objective over multimodal content, outperforms the state-of-the-art text-only model by almost 4% and a strong multimodal baseline with no pretraining by over 3%. 
    more » « less