skip to main content


Title: Fly-through synthesis of nanoparticles on textile and paper substrates
The fast and efficient synthesis of nanoparticles on flexible and lightweight substrates is increasingly critical for various medical and wearable applications. However, conventional high temperature (high-T) processes for nanoparticle synthesis are intrinsically incompatible with temperature-sensitive substrates, including textiles and paper ( i.e. low-T substrates). In this work, we report a non-contact, ‘fly-through’ method to synthesize nanoparticles on low-T substrates by rapid radiative heating under short timescales. As a demonstration, textile substrates loaded with platinum (Pt) salt precursor are rapidly heated and quenched as they move across a 2000 K heating source at a continuous production speed of 0.5 cm s −1 . The rapid radiative heating method induces the thermal decomposition of various precursor salts and nanoparticle formation, while the short duration ensures negligible change to the respective low-T substrate along with greatly improved production efficiency. The reported method can be generally applied to the synthesis of metal nanoparticles ( e.g. gold and ruthenium) on various low-T substrates ( e.g. paper). The non-contact and continuous ‘fly-through’ synthesis offers a robust and efficient way to synthesize supported nanoparticles on flexible and lightweight substrates. It is also promising for ultrafast and roll-to-roll manufacturing to enable viable applications.  more » « less
Award ID(s):
1635221
PAR ID:
10093701
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
11
Issue:
13
ISSN:
2040-3364
Page Range / eLocation ID:
6174 to 6181
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Observations of nanoparticle superlattice formation over minutes during colloidal nanoparticle synthesis elude description by conventional understanding of self-assembly, which theorizes superlattices require extended formation times to allow for diffusively driven annealing of packing defects. It remains unclear how nanoparticle position annealing occurs on such short time scales despite the rapid superlattice growth kinetics. Here we utilize liquid phase transmission electron microscopy to directly image the self-assembly of platinum nanoparticles into close packed supraparticles over tens of seconds during nanoparticle synthesis. Electron-beam induced reduction of an aqueous platinum precursor formed monodisperse 2–3 nm platinum nanoparticles that simultaneously self-assembled over tens of seconds into 3D supraparticles, some of which showed crystalline ordered domains. Experimentally varying the interparticle interactions ( e.g. , electrostatic, steric interactions) by changing precursor chemistry revealed that supraparticle formation was driven by weak attractive van der Waals forces balanced by short ranged repulsive steric interactions. Growth kinetic measurements and an interparticle interaction model demonstrated that nanoparticle surface diffusion rates on the supraparticles were orders of magnitude faster than nanoparticle attachment, enabling nanoparticles to find high coordination binding sites unimpeded by incoming particles. These results reconcile rapid self-assembly of supraparticles with the conventional self-assembly paradigm in which nanocrystal position annealing by surface diffusion occurs on a significantly shorter time scale than nanocrystal attachment. 
    more » « less
  2. Background: Magnetic nanoparticles are attracting much attention toward easyoperation and size controllable synthesis methods. We develop a method to synthesize MnO, Co,CoO, and Ni nanoparticles by thermal decomposition of metal 2,4-pentanedionates in the presenceof oleylamine (OLA), oleic acid (OA), and 1-octadecene (ODE). Methods: Similar experimental conditions are used to prepare nanoparticles except for the metalstarting materials (manganese 2,4-pentanedionate, nickel 2,4-pentanedionate, and cobalt 2,4-pentanedionate), leading to different products. For the manganese 2,4-pentanedionate startingmaterial, MnO nanoparticles are always obtained as the reaction is controlled with differenttemperatures, precursor concentrations, ligand ratios, and reaction time. For the cobalt 2,4-pentanedionate starting material, only three experimental conditions can produce pure phase CoOand Co nanoparticles. For the nickel 2,4-pentanedionate starting material, only three experimentalconditions lead to the production of pure phase Ni nanoparticles. Results: The nanoparticle sizes increase with the increase of reaction temperatures. It is observedthat the reaction time affects nanoparticle growth. The nanoparticles are studied by XRD, TEM,and magnetic measurements. Conclusion: This work presents a facile method to prepare nanoparticles with different sizes,which provides a fundamental understanding of nanoparticle growth in solution. 
    more » « less
  3. Currently, bioresorbable electronic devices are predominantly fabricated by complex and expensive vacuum‐based integrated circuit (IC) processes. Here, a low‐cost manufacturing approach for bioresorbable conductors on bioresorbable polymer substrates by evaporation–condensation‐mediated laser printing and sintering of Zn nanoparticle is reported. Laser sintering of Zn nanoparticles has been technically difficult due to the surface oxide on nanoparticles. To circumvent the surface oxide, a novel approach is discovered to print and sinter Zn nanoparticle facilitated by evaporation–condensation in confined domains. The printing process can be performed on low‐temperature substrates in ambient environment allowing easy integration on a roll‐to‐roll platform for economical manufacturing of bioresorbable electronics. The fabricated Zn conductors show excellent electrical conductivity (≈1.124 × 106S m−1), mechanical durability, and water dissolvability. Successful demonstration of strain gauges confirms the potential application in various environmentally friendly sensors and circuits.

     
    more » « less
  4. null (Ed.)
    A microsecond time-scale photonic lift-off (PLO) process was used to fabricate mechanically flexible photovoltaic devices (PVs) with a total thickness of less than 20 μm. PLO is a rapid, scalable photothermal technique for processing extremely thin, mechanically flexible electronic and optoelectronic devices. PLO is also compatible with large-area devices, roll-to-roll processing, and substrates with low temperature compatibility. As a proof of concept, PVs were fabricated using CuInSe2 nanocrystal ink deposited at room temperature under ambient conditions on thin, plastic substrates heated to 100 °C. It was necessary to prevent cracking of the brittle top contact layer of indium tin oxide (ITO) during lift-off, either by using a layer of silver nanowires (AgNW) as the top contact or by infusing the ITO layer with AgNW. This approach could generally be used to improve the mechanical versatility of current collectors in a variety of ultrathin electronic and optoelectronic devices requiring a transparent conductive contact layer. 
    more » « less
  5. High entropy oxide nanoparticles (HEO NPs) with multiple component elements possess improved stability and multiple uses for functional applications, including catalysis, data memory, and energy storage. However, the synthesis of homogenous HEO NPs containing five or more immiscible elements with a single-phase structure is still a great challenge due to the strict synthetic conditions. In particular, several synthesis methods of HEO NPs require extremely high temperatures. In this study, we demonstrate a low cost, facile, and effective method to synthesize three- to eight-element HEO nanoparticles by a combination of electrospinning and low-temperature ambient annealing. HEO NPs were generated by annealing nanofibers at 330 °C for 30 minutes under air conditions. The average size of the HEO nanoparticles was ∼30 nm and homogenous element distribution was obtained from post-electrospinning thermal decomposition. The synthesized HEO NPs exhibited magnetic properties with the highest saturation magnetization at 9.588 emu g −1 and the highest coercivity at 147.175 Oe for HEO NPs with four magnetic elements while integrating more nonmagnetic elements will suppress the magnetic response. This electrospun and low-temperature annealing method provides an easy and flexible design for nanoparticle composition and economic processing pathway, which offers a cost- and energy-effective, and high throughput entropy nanoparticle synthesis on a large scale. 
    more » « less