We present a new technique for efficiently removing almost all short cycles in a graph without unintentionally removing its triangles. Consequently, triangle finding problems do not become easy even in almost kcycle free graphs, for any constant k≥ 4. Triangle finding is at the base of many conditional lower bounds in P, mainly for distance computation problems, and the existence of many 4 or 5cycles in a worstcase instance had been the obstacle towards resolving major open questions. Hardness of approximation: Are there distance oracles with m1+o(1) preprocessing time and mo(1) query time that achieve a constant approximation? Existing algorithms with such desirable time bounds only achieve superconstant approximation factors, while only 3− factors were conditionally ruled out (Pătraşcu, Roditty, and Thorup; FOCS 2012). We prove that no O(1) approximations are possible, assuming the 3SUM or APSP conjectures. In particular, we prove that kapproximations require Ω(m1+1/ck) time, which is tight up to the constant c. The lower bound holds even for the offline version where we are given the queries in advance, and extends to other problems such as dynamic shortest paths. The 4Cycle problem: An infamous open question in finegrained complexity is to establish any surprising consequences from amore »
This content will become publicly available on January 1, 2023
The Complexity of AverageCase Dynamic Subgraph Counting
Statistics of small subgraph counts such as triangles, fourcycles, and st paths of short lengths reveal important structural properties of the underlying graph. These problems have been widely studied in social network analysis. In most relevant applications, the graphs are not only massive but also change dynamically over time. Most of these problems become hard in the dynamic setting when considering the worst case. In this paper, we ask whether the question of small subgraph counting over dynamic graphs is hard also in the average case.
We consider the simplest possible average case model where the updates follow an ErdősRényi graph: each update selects a pair of vertices (u, v) uniformly at random and flips the existence of the edge (u, v). We develop new lower bounds and matching algorithms in this model for counting fourcycles, counting triangles through a specified point s, or a random queried point, and st paths of length 3, 4 and 5. Our results indicate while computing st paths of length 3, and 4 are easy in the average case with O(1) update time (note that they are hard in the worst case), it becomes hard when considering st paths of length 5.
We introduce new techniques more »
 Publication Date:
 NSFPAR ID:
 10314273
 Journal Name:
 Proceedings of the 2022 Annual ACMSIAM Symposium on Discrete Algorithms (SODA)
 Sponsoring Org:
 National Science Foundation
More Like this


We study graph computations in an enhanced data streaming setting, where a spacebounded client reading the edge stream of a massive graph may delegate some of its work to a cloud service. We seek algorithms that allow the client to verify a purported proof sent by the cloud service that the work done in the cloud is correct. A line of work starting with Chakrabarti et al. (ICALP 2009) has provided such algorithms, which we call schemes, for several statistical and graphtheoretic problems, many of which exhibit a tradeoff between the length of the proof and the space used by the streaming verifier. This work designs new schemes for a number of basic graph problems  including triangle counting, maximum matching, topological sorting, and singlesource shortest paths  where past work had either failed to obtain smooth tradeoffs between these two key complexity measures or only obtained suboptimal tradeoffs. Our key innovation is having the verifier compute certain nonlinear sketches of the input stream, leading to either new or improved tradeoffs. In many cases, our schemes, in fact, provide optimal tradeoffs up to logarithmic factors. Specifically, for most graph problems that we study, it is known that the product ofmore »

We revisit the muchstudied problem of spaceefficiently estimating the number of triangles in a graph stream, and extensions of this problem to counting fixedsized cliques and cycles, obtaining a number of new upper and lower bounds. For the important special case of counting triangles, we give a $4$pass, $(1\pm\varepsilon)$approximate, randomized algorithm that needs at most $\widetilde{O}(\varepsilon^{2}\cdot m^{3/2}/T)$ space, where $m$ is the number of edges and $T$ is a promised lower bound on the number of triangles. This matches the space bound of a very recent algorithm (McGregor et al., PODS 2016), with an arguably simpler and more general technique. We give an improved multipass lower bound of $\Omega(\min\{m^{3/2}/T, m/\sqrt{T}\})$, applicable at essentially all densities $\Omega(n) \le m \le O(n^2)$. We also prove other multipass lower bounds in terms of various structural parameters of the input graph. Together, our results resolve a couple of open questions raised in recent work (Braverman et al., ICALP 2013). Our presentation emphasizes more general frameworks, for both upper and lower bounds. We give a sampling algorithm for counting arbitrary subgraphs and then improve it via combinatorial means in the special cases of counting odd cliques and odd cycles. Our results show that these problemsmore »

Dyckreachability is a fundamental formulation for program analysis, which has been widely used to capture properlymatchedparenthesis program properties such as function calls/returns and field writes/reads. Bidirected Dyckreachability is a relaxation of Dyckreachability on bidirected graphs where each edge u → ( i v labeled by an open parenthesis “( i ” is accompanied with an inverse edge v → ) i u labeled by the corresponding close parenthesis “) i ”, and vice versa. In practice, many client analyses such as alias analysis adopt the bidirected Dyckreachability formulation. Bidirected Dyckreachability admits an optimal reachability algorithm. Specifically, given a graph with n nodes and m edges, the optimal bidirected Dyckreachability algorithm computes allpairs reachability information in O ( m ) time. This paper focuses on the dynamic version of bidirected Dyckreachability. In particular, we consider the problem of maintaining allpairs Dyckreachability information in bidirected graphs under a sequence of edge insertions and deletions. Dynamic bidirected Dyckreachability can formulate many program analysis problems in the presence of code changes. Unfortunately, solving dynamic graph reachability problems is challenging. For example, even for maintaining transitive closure, the fastest deterministic dynamic algorithm requires O ( n 2 ) update time to achieve O (1) querymore »

Counting and uniformly sampling motifs in a graph are fundamental algorithmic tasks with numerous applications across multiple fields. Since these problems are computationally expensive, recent efforts have focused on devising sublineartime algorithms for these problems. We consider the model where the algorithm gets a constant size motif H and query access to a graph G, where the allowed queries are degree, neighbor, and pair queries, as well as uniform edge sample queries. In the sampling task, the algorithm is required to output a uniformly distributed copy of H in G (if one exists), and in the counting task it is required to output a good estimate to the number of copies of H in G. Previous algorithms for the uniform sampling task were based on a decomposition of H into a collection of odd cycles and stars, denoted D∗(H) = {Ok1 , ...,Okq , Sp1 , ..., Spℓ19 }. These algorithms were shown to be optimal for the case where H is a clique or an oddlength cycle, but no other lower bounds were known. We present a new algorithm for sampling arbitrary motifs which, up to poly(log n) factors, for any motif H whose decomposition contains at least twomore »