skip to main content

This content will become publicly available on June 9, 2023

Title: Hardness of approximation in p via short cycle removal: cycle detection, distance oracles, and beyond
We present a new technique for efficiently removing almost all short cycles in a graph without unintentionally removing its triangles. Consequently, triangle finding problems do not become easy even in almost k-cycle free graphs, for any constant k≥ 4. Triangle finding is at the base of many conditional lower bounds in P, mainly for distance computation problems, and the existence of many 4- or 5-cycles in a worst-case instance had been the obstacle towards resolving major open questions. Hardness of approximation: Are there distance oracles with m1+o(1) preprocessing time and mo(1) query time that achieve a constant approximation? Existing algorithms with such desirable time bounds only achieve super-constant approximation factors, while only 3− factors were conditionally ruled out (Pătraşcu, Roditty, and Thorup; FOCS 2012). We prove that no O(1) approximations are possible, assuming the 3-SUM or APSP conjectures. In particular, we prove that k-approximations require Ω(m1+1/ck) time, which is tight up to the constant c. The lower bound holds even for the offline version where we are given the queries in advance, and extends to other problems such as dynamic shortest paths. The 4-Cycle problem: An infamous open question in fine-grained complexity is to establish any surprising consequences from a subquadratic or more » even linear-time algorithm for detecting a 4-cycle in a graph. This is arguably one of the simplest problems without a near-linear time algorithm nor a conditional lower bound. We prove that Ω(m1.1194) time is needed for k-cycle detection for all k≥ 4, unless we can detect a triangle in √n-degree graphs in O(n2−δ) time; a breakthrough that is not known to follow even from optimal matrix multiplication algorithms. « less
Authors:
; ; ;
Award ID(s):
1900460
Publication Date:
NSF-PAR ID:
10338450
Journal Name:
STOC 2022: Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing
Page Range or eLocation-ID:
1487 to 1500
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the classic set cover problem from the perspective of sub-linear algorithms. Given access to a collection of m sets over n elements in the query model, we show that sub-linear algorithms derived from existing techniques have almost tight query complexities. On one hand, first we show an adaptation of the streaming algorithm presented in [17] to the sub-linear query model, that returns an α-approximate cover using Õ(m(n/k)^1/(α–1) + nk) queries to the input, where k denotes the value of a minimum set cover. We then complement this upper bound by proving that for lower values of k, the required number of queries is , even for estimating the optimal cover size. Moreover, we prove that even checking whether a given collection of sets covers all the elements would require Ω(nk) queries. These two lower bounds provide strong evidence that the upper bound is almost tight for certain values of the parameter k. On the other hand, we show that this bound is not optimal for larger values of the parameter k, as there exists a (1 + ε)-approximation algorithm with Õ(mn/kε^2) queries. We show that this bound is essentially tight for sufficiently small constant ε, by establishing amore »lower bound of query complexity. Our lower-bound results follow by carefully designing two distributions of instances that are hard to distinguish. In particular, our first lower bound involves a probabilistic construction of a certain set system with a minimum set cover of size αk, with the key property that a small number of “almost uniformly distributed” modifications can reduce the minimum set cover size down to k. Thus, these modifications are not detectable unless a large number of queries are asked. We believe that our probabilistic construction technique might find applications to lower bounds for other combinatorial optimization problems.« less
  2. Motivated by the increasing need to understand the distributed algorithmic foundations of large-scale graph computations, we study some fundamental graph problems in a message-passing model for distributed computing where k ≥ 2 machines jointly perform computations on graphs with n nodes (typically, n >> k). The input graph is assumed to be initially randomly partitioned among the k machines, a common implementation in many real-world systems. Communication is point-to-point, and the goal is to minimize the number of communication rounds of the computation. Our main contribution is the General Lower Bound Theorem , a theorem that can be used to show non-trivial lower bounds on the round complexity of distributed large-scale data computations. This result is established via an information-theoretic approach that relates the round complexity to the minimal amount of information required by machines to solve the problem. Our approach is generic, and this theorem can be used in a “cookbook” fashion to show distributed lower bounds for several problems, including non-graph problems. We present two applications by showing (almost) tight lower bounds on the round complexity of two fundamental graph problems, namely, PageRank computation and triangle enumeration . These applications show that our approach can yield lower boundsmore »for problems where the application of communication complexity techniques seems not obvious or gives weak bounds, including and especially under a stochastic partition of the input. We then present distributed algorithms for PageRank and triangle enumeration with a round complexity that (almost) matches the respective lower bounds; these algorithms exhibit a round complexity that scales superlinearly in k , improving significantly over previous results [Klauck et al., SODA 2015]. Specifically, we show the following results: PageRank: We show a lower bound of Ὼ(n/k 2 ) rounds and present a distributed algorithm that computes an approximation of the PageRank of all the nodes of a graph in Õ(n/k 2 ) rounds. Triangle enumeration: We show that there exist graphs with m edges where any distributed algorithm requires Ὼ(m/k 5/3 ) rounds. This result also implies the first non-trivial lower bound of Ὼ(n 1/3 ) rounds for the congested clique model, which is tight up to logarithmic factors. We then present a distributed algorithm that enumerates all the triangles of a graph in Õ(m/k 5/3 + n/k 4/3 ) rounds.« less
  3. The Sparsest Cut is a fundamental optimization problem that have been extensively studied. For planar inputs the problem is in P and can be solved in Õ(n 3 ) time if all vertex weights are 1. Despite a significant amount of effort, the best algorithms date back to the early 90’s and can only achieve O(log n)-approximation in Õ(n) time or 3.5-approximation in Õ(n 2 ) time [Rao, STOC92]. Our main result is an Ω(n 2−ε ) lower bound for Sparsest Cut even in planar graphs with unit vertex weights, under the (min, +)-Convolution conjecture, showing that approxima- tions are inevitable in the near-linear time regime. To complement the lower bound, we provide a 3.3-approximation in near-linear time, improving upon the 25-year old result of Rao in both time and accuracy. We also show that our lower bound is not far from optimal by observing an exact algorithm with running time Õ(n 5/2 ) improving upon the Õ(n 3 ) algorithm of Park and Phillips [STOC93]. Our lower bound accomplishes a repeatedly raised challenge by being the first fine-grained lower bound for a natural planar graph problem in P. Building on our construction we prove near-quadratic lower bounds under SETHmore »for variants of the closest pair problem in planar graphs, and use them to show that the popular Average-Linkage procedure for Hierarchical Clustering cannot be simulated in truly subquadratic time. At the core of our constructions is a diamond-like gadget that also settles the complexity of Diameter in distributed planar networks. We prove an Ω(n/ log n) lower bound on the number of communication rounds required to compute the weighted diameter of a network in the CONGET model, even when the underlying graph is planar and all nodes are D = 4 hops away from each other. This is the first poly(n) lower bound in the planar-distributed setting, and it complements the recent poly(D, log n) upper bounds of Li and Parter [STOC 2019] for (exact) unweighted diameter and for (1 + ε) approximate weighted diameter.« less
  4. We revisit the much-studied problem of space-efficiently estimating the number of triangles in a graph stream, and extensions of this problem to counting fixed-sized cliques and cycles, obtaining a number of new upper and lower bounds. For the important special case of counting triangles, we give a $4$-pass, $(1\pm\varepsilon)$-approximate, randomized algorithm that needs at most $\widetilde{O}(\varepsilon^{-2}\cdot m^{3/2}/T)$ space, where $m$ is the number of edges and $T$ is a promised lower bound on the number of triangles. This matches the space bound of a very recent algorithm (McGregor et al., PODS 2016), with an arguably simpler and more general technique. We give an improved multi-pass lower bound of $\Omega(\min\{m^{3/2}/T, m/\sqrt{T}\})$, applicable at essentially all densities $\Omega(n) \le m \le O(n^2)$. We also prove other multi-pass lower bounds in terms of various structural parameters of the input graph. Together, our results resolve a couple of open questions raised in recent work (Braverman et al., ICALP 2013). Our presentation emphasizes more general frameworks, for both upper and lower bounds. We give a sampling algorithm for counting arbitrary subgraphs and then improve it via combinatorial means in the special cases of counting odd cliques and odd cycles. Our results show that these problemsmore »are considerably easier in the cash-register streaming model than in the turnstile model, where previous work had focused (Manjunath et al., ESA 2011; Kane et al., ICALP 2012). We use Tur{\'a}n graphs and related gadgets to derive lower bounds for counting cliques and cycles, with triangle-counting lower bounds following as a corollary.« less
  5. The Minimum Circuit Size Problem (MCSP) has been the focus of intense study recently; MCSP is hard for SZK under rather powerful reductions, and is provably not hard under "local" reductions computable in TIME(n^0.49) . The question of whether MCSP is NP-hard (or indeed, hard even for small subclasses of P) under some of the more familiar notions of reducibility (such as many-one or Turing reductions computable in polynomial time or in AC^0) is closely related to many of the longstanding open questions in complexity theory. All prior hardness results for MCSP hold also for computing somewhat weak approximations to the circuit complexity of a function. Some of these results were proved by exploiting a connection to a notion of time-bounded Kolmogorov complexity (KT) and the corresponding decision problem (MKTP). More recently, a new approach for proving improved hardness results for MKTP was developed, but this approach establishes only hardness of extremely good approximations of the form 1+o(1), and these improved hardness results are not yet known to hold for MCSP. In particular, it is known that MKTP is hard for the complexity class DET under nonuniform AC^0 m-reductions, implying MKTP is not in AC^0[p] for any prime p. Itmore »was still open if similar circuit lower bounds hold for MCSP. One possible avenue for proving a similar hardness result for MCSP would be to improve the hardness of approximation for MKTP beyond 1 + o(1) to omega(1), as KT-complexity and circuit size are polynomially-related. In this paper, we show that this approach cannot succeed. More speci cally, we prove that PARITY does not reduce to the problem of computing superlinear approximations to KT-complexity or circuit size via AC^0-Turing reductions that make O(1) queries. This is signi cant, since approximating any set in P/poly AC^0-reduces to just one query of a much worse approximation of circuit size or KT-complexity. For weaker approximations, we also prove non-hardness under more powerful reductions. Our non-hardness results are unconditional, in contrast to conditional results presented in earlier work (for more powerful reductions, but for much worse approximations). This highlights obstacles that would have to be overcome by any proof that MKTP or MCSP is hard for NP under AC^0 reductions. It may also be a step toward con rming a conjecture of Murray and Williams, that MCSP is not NP-complete under logtime-uniform AC0 m-reductions.« less